
© 2014 inoage GmbH

MADRIX 2 Script Help and Manual

MADRIX Script Version: 1.43.

MADRIX Version: 2.14h

November 2014

MADRIX 2 Script Help and Manual2

© 2014 inoage GmbH

Table of Contents

Part I What is New 6

Part II MADRIX Script (Introduction) 31

... 311 Getting Started

... 342 Working With The Script Editor

... 383 Basics

.. 38Writing A Script

.. 39Syntax Highlighting

.. 41Identifiers

.. 42Functions

.. 46Data Types & Variables

... 47Using Variables

... 50Using Data Types

... 52Conversion Betw een Data Types

... 53Fields

... 56Strings & String Operations

.. 62Expressions

.. 67Statements

... 68'If ' & 'Else If ' Statements

... 71'Sw itch' Statements

... 74'For' & 'While' Loops

.. 78Reading From External Files

.. 82Using Comments

.. 82Including Extra Information

... 834 Advanced Techniques

.. 83Draw And Render Functions

... 84Pixels Vs. Vectors

... 85Using Colors

... 92Predefined Colors

... 93Using Filters

... 96'ShiftMatrix'

... 97'Draw PixelArea'

... 101'PixelTranspose'

... 107'SetPixel'

.. 110Manipulating Effects

... 111Map An Effect

... 115Tile An Effect

... 117Mix Modes

.. 119Sound2Light & Music2Light

... 119Sound2Light (S2L)

... 123Music2Light (M2L)

Part III MADRIX Script (Programming Language
Overview) 128

... 1281 Keyword Search

3Contents

3

© 2014 inoage GmbH

... 1282 List Of Functions (Alphabetical Order)

... 1443 List Of Functions (Grouped)

... 1554 List Of Global Variables And Constants

... 1615 List Of Operations

... 1626 List Of Structures

... 1647 Table Of Frequencies

... 1708 Table Of Notes

... 1719 Examples

Part IV MAS Script Effect 185

... 1851 Overview

... 1882 Functions

... 1903 Using GUI Elements (User Interaction)

... 2094 Controlling The Tempo

.. 209Increasing The Speed Of Effects

.. 213Controlling A Script Via Frame ID

.. 216Using A Fixed Render Frequency

Part V Macros For Effects 220

... 2201 Overview

... 2232 Functions

... 2263 SCE Static Color Effects

.. 226SCE Color

.. 228SCE Bitmap

.. 232SCE Bounce

.. 234SCE Color Change

.. 234SCE Color Fill

.. 238SCE Color Ramp

.. 240SCE Color Scroll

.. 243SCE Drops

.. 246SCE Explosions

.. 250SCE Fire

.. 254SCE Graph

.. 258SCE Metaballs

.. 263SCE Plasma

.. 264SCE Pulse / Stroboscope

.. 265SCE Radial

.. 270SCE Shapes

.. 274SCE Starfield

.. 276SCE Ticker

.. 281SCE Video

.. 285SCE Wave

... 2874 S2L Sound2Light Effects

.. 287S2L Equalizer

.. 291S2L EQ Drops

.. 292S2L EQ Shapes

.. 296S2L EQ Tubes

.. 297S2L Frequency Flash

MADRIX 2 Script Help and Manual4

© 2014 inoage GmbH

.. 299S2L Level Color

.. 300S2L Level Meter

.. 302S2L Level Ring

.. 305S2L Waveform

.. 307S2L Wavegraph

... 3085 M2L Music2Light Effects

.. 308M2L Color Fade

.. 309M2L Color Rings

.. 310M2L Color Scroll

.. 312M2L Interval Drops

.. 314M2L Interval Tubes

.. 316M2L Single Tone Shapes

Part VI Storage Place Macro 322

... 3221 Overview

... 3252 Functions

Part VII Main Output Macro 331

... 3311 Overview

... 3342 Functions

... 3393 Examples

Part VIII Imprint & Copyright 355

Index 357

Part

I

MADRIX 2 Script Help and Manual6

© 2014 inoage GmbH

1 What is New

The latest MADRIX Script version is 1.43 (MADRIX 2.14h).

News For Script Engine Version 1.43 (MADRIX V2.14h)

New functions for Main Output Macro:

int CuelistCount()

News For 1.40 (MADRIX V2.14b)

New global functions:

int IsMidiInEnabled()

int GetMidiInNoteValue(int note, int midichannel, int device)

int GetMidiInControlValue(int control, int midichannel, int device)

void GetMidiInNote(int midivalues[], int startnote, int notecount, int midichannel, int device)

void GetMidiInControl(int midivalues[], int startcontrol, int controlcount, int midichannel, int

device)

void Dim(float value)

void DimPixel(float value, int x, int y)

void DimPixelArea(float value, int x, int y, int width, int height)

New functions for Main Output Macro:

int ImportPatch(string name)

Updated Information:

void GetDmxIn(int DmxValues[], int startchannel, int channels, int universe)

int GetDmxInChannel(int channel, int universe)

int GetFilter()

void SetFilter()

What is New 7

© 2014 inoage GmbH

void GetPixelArea(matrix[][], int xSrc, int ySrc, int w, int h, int xDst, int yDst)

void DrawPixelArea(matrix[][], int xDst, int yDst, int w, int h, int xSrc, int ySrc, color filter)

News For 1.39 (MADRIX V2.14a)

New functions for SCE Ticker:

void SetContinuous(int enable)

int GetContinuous()

void SetReverseWords(int enable)

int GetReverseWords()

Deprecated functions for SCE Ticker:

void SetContinous(int enable)

int GetContinous()

void SetReverseWord(int enable)

int GetReverseWord()

New functions (Macro) for the SCE Graph:

void SetContinuous(int enable)

int GetContinuous()

New functions for SCE Color Ramp:

void AddColor(color c, float position, int fade)

void RemoveColor(int index)

int SetColorPosition(int index, float position)

float GetColorPosition(int index)

void SetColorFade(int index, fade)

int GetColorFade(int index)

void FadeAllColors()

void FadeNoneColors()

MADRIX 2 Script Help and Manual8

© 2014 inoage GmbH

void SetUniformDistances()

void InvertColorPositions()

void InvertColors()

Deprecated functions for SCE Color Ramp:

int SetPosition(int index, float pos)

float GetPosition(int index)

void SetFade(int index)

int GetFade(int index)

New Functions for SCE Plasma:

void SetColor(int idx, color c)

color GetColor(int idx)

int GetColorCount()

void AddColor(color c, float position, int fade)

void RemoveColor(int index)

int SetColorPosition(int index, float position)

float GetColorPosition(int index)

void SetUniformDistances()

void InvertColorPositions()

void InvertColors()

New functions for S2L Waveform:

void SetColor(int idx, color c)

color GetColor(int idx)

int GetColorCount()

void AddColor(color c, float position, int fade)

void RemoveColor(int index)

int SetColorPosition(int index, float position)

float GetColorPosition(int index)

void SetUniformDistances()

What is New 9

© 2014 inoage GmbH

void InvertColorPositions()

void InvertColors()

New global functions:

time GetTimeCode()

New global defines:

CYAN, TURQUOISE, PINK, MAGENTA, SILVER, DARK_GRAY, ORANGE, BROWN, SKY, GOLD,

WHITE_ALPHA, BLACK_ALPHA

News For 1.38 (MADRIX V2.14)

New functions (Macro) and defines for the SCE Graph effect:

void SetBpm(int bpm)

int GetBpm()

void SetDirection(int direction)

int GetDirection()

void SetHeight(int value)

int GetHeight()

void SetHeightMax(int value)

int GetHeightMax(int value)

void SetWidth(int value)

int GetWidth()

void SetWidthMax(int value)

int GetWidthMax()

void SetPitch(int value)

int GetPitch()

void SetPitchMax(int value)

int GetPitchMax()

void SetFrequency(int index, float value)

float GetFrequency(int index)

MADRIX 2 Script Help and Manual10

© 2014 inoage GmbH

void SetFrequencyMax(float value)

float GetFrequencyMax()

void SetPeak(int index, int value)

int GetPeak(int index)

void SetShape(int shape)

int GetShape()

void SetColorMode(int mode)

int GetColorMode()

void SetModeHeight(int mode)

int GetModeHeight()

void SetModeWidth(int mode)

int GetModeWidth()

void SetModePitch(int mode)

int GetModePitch()

void SetModeFrequency(int mode)

int GetModeFrequency()

void SetText(string text)

string GetText()

void SetRotation(int angle)

int GetRotation()

void SetFontWidth(int value)

int GetFontWidth()

void SetFontHeight(int value)

int GetFontHeight()

void SetFontItalic(int value)

int GetFontItalic()

void SetFontUnderline(int value)

int GetFontUnderline()

void SetFontStrikeOut(int value)

int GetFontStrikeOut()

void SetFontWeight(int value)

int GetFontWeight()

void SetFontFaceName(string name)

string GetFontFaceName()

void SetMode(int mode)

What is New 11

© 2014 inoage GmbH

int GetMode()

void SetGraphMode(int index, int mode)

int GetGraphMode(int index)

MODE_SINE, MODE_COSINE, MODE_TRIANGLE, MODE_SQUARE , MODE_NONE, MODE_UNIFORM,

 MODE_LINEAR, MODE_QUADRATIC, MODE_SQRT, MODE_CUBIC, MODE_RANDOM , DRAW_RECT,

 FILL_RECT, DRAW_CIRCLE, FILL_CIRCLE, DRAW_CROSS, DRAW_STAR, DRAW_DIAMOND,

 FILL_DIAMOND, DRAW_RANDOM, DRAW_TEXT, CM_LOOP, CM_SHUFFLE, CM_RANDOM,

 MODE_SENTENCE, MODE_WORD, MODE_CHAR

New functions for Macros for Effects:

void SetSolo(int)

 int GetSolo()

 void SetBlind(int)

 int GetBlind()

New functions for the Main Output Macro:

void ImportStoragePlace(int storage, int place, string name)

void ImportStorage(int storage, string name)

News For 1.35 (MADRIX V2.13b)

New global functions:

void SetVectorPixel(color, float x, float y)

color GetVectorPixel(float x, float y)

Updated functions:

void GetDmxIn(int DmxValues[], int startchannel, int channels, int universe)

int GetDmxInChannel(int channel, int universe)

int ReadAsync(string file, string txt) (FILE_OK)

MADRIX 2 Script Help and Manual12

© 2014 inoage GmbH

News For 1.33 (MADRIX V2.13)

New global functions and defines:

void TRACE(variable)

FILTER_NONE, FILTER_INVERT_H_MATRIX, FILTER_INVERT_V_MATRIX, FILTER_INVERT_HV_MATRIX

 (Filters)

New functions for the Main Output Macro:

void SetStorageFilter(int storage, int filter)

int GetStorageFilter()

New defines for the Main Output Macro:

HWIPEFADE, VWIPEFADE, HXWIPEFADE, VXWIPEFADE, HSLIDEFADE, VSLIDEFADE, HXSLIDEFADE,

VXSLIDEFADE (Function SetFadeType)

New functions for the Storage Place Macro:

void SetFilter(int filter)

int GetFilter()

void SetLayerFilter(int number, int filter)

int GetLayerFilter(int number)

New functions for Macros for Effects:

void SetFilter(int filter)

int GetFilter()

New or improved functions for the SCE Color Fill effect:

void SetWidth(int size)

int GetWidth()

What is New 13

© 2014 inoage GmbH

void SetPitch(int pitch)

int GetPitch()

void SetShape(int shape)

int GetShape()

void SetMirror(int value)

int GetMirror()

void SetCircle(int value)

int GetCircle()

void SetCenter(int value)

int GetCenter()

News For Script Engine Version 1.30 (MADRIX V2.12a)

New functions for MADRIX Script:

void DrawPixelDiamond(color col, int x, int y, int w, int h)

void DrawVectorDiamond(color col, float x, float y, float w, float h)

void FillPixelDiamond(color col, int x, int y, int w, int h)

void FillVectorDiamond(color col, float x, float y, float w, float h)

New functions and defines for the SCE Color Fill effect:

void SetWidth(int size)

int GetWidth()

void SetPitch(int pitch)

int GetPitch()

void SetShape(int shape)

int GetShape()

MODE_RANDOM, MODE_DROPS, MODE_SNAKE, MODE_FLAT, MODE_COLLAPSE, MODE_TETRIS

News For Script Engine Version 1.29 (MADRIX V2.12)

New functions for MADRIX Script:

void DrawPixelText(color c, font f, string t, int x, int y, int rotation)

MADRIX 2 Script Help and Manual14

© 2014 inoage GmbH

void DrawVectorText(color c, font f, string t, float x, float y, int rotation)

New structure:

font

News For Script Engine Version 1.28 (MADRIX V2.11)

New functions (Macro) and defines for the SCE Explosions effect:

void SetBpm(int bpm)

int GetBpm()

void SetExplosionSize(int size)

int GetExplosionSize(void)

void SetShapeSize(int size)

int GetShapeSize(void)

void SetGravity(float gravity)

float GetGravity(void)

void SetFadeOut(int fadeout)

int GetFadeOut(void)

void SetShapeCount(int count)

int GetShapeCount(void)

void SetRocketCount(int count)

int GetRocketCount(void)

void SetBlur(int enable)

int GetBlur(void)

void FireRocket(int posX, int posY, int explPosX, int explPosY, int ParticleCtn, int explSize, int

explShape, int drawShape, color Col, color sparkleCol)

void Detonate(int explPosX, int explPosY, int ParticleCtn, int explSize, int explShape, int

drawShape, color Col, color sparkleCol)

void SetExplosionMode(int mode)

int GetExplosionMode(void)

void SetExplosionShape(int shape)

int GetExplosionShape(void)

void SetDrawShape(int shape)

What is New 15

© 2014 inoage GmbH

int GetDrawShape(void)

void SetColorMode(int mode)

int GetColorMode(void)

int GetColorCount()

void RemoveColor(int idx)

void SetColor(int idx, color c)

color GetColor(int idx)

void AddColor(int idx, color c)

void SetSparkleColorMode(int mode)

int GetSparkleColorMode(void)

int GetSparkleColorCount(void)

void RemoveSparkleColor(int)

void SetSparkleColor(int idx, color c)

color GetSparkleColor(int idx)

void AddSparkleColor(int idx, color c)

MODE_EXPLOSIONS, MODE_FIREWORKS, EXPLOSION_SHAPE_SPHERE,

EXPLOSION_SHAPE_SPHERE_GLOW, EXPLOSION_SHAPE_SPIRAL, EXPLOSION_SHAPE_RADIAL,

EXPLOSION_SHAPE_DIAMOND, EXPLOSION_SHAPE_STAR, EXPLOSION_SHAPE_RANDOM,

DRAW_RECT, FILL_RECT, DRAW_CIRCLE, FILL_CIRCLE, DRAW_CROSS, DRAW_STAR, DRAW_LINE,

DRAW_DIAMOND, FILL_DIAMOND, DRAW_RANDOM, CM_LOOP, CM_SHUFFLE, CM_RANDOM

New functions (Macro) and defines for the SCE Starfield effect:

void SetBpm(int bpm)

int GetBpm()

void SetLength(int size)

int GetLength()

void SetCount(int count)

int GetCount()

void SetWidth(int width)

int GetWidth()

void SetDepth(int depth)

int GetDepth()

void SetRotation(int rotation)

int GetRotation()

MADRIX 2 Script Help and Manual16

© 2014 inoage GmbH

void SetDirection(int dir)

int GetDirection()

void SetColorMode(int mode)

int GetColorMode()

void SetShape(int shape)

int GetShape()

DRAW_RECT, FILL_RECT, DRAW_CIRCLE, FILL_CIRCLE, DRAW_CROSS, DRAW_STAR, DRAW_LINE,

DRAW_DIAMOND, FILL_DIAMOND, DRAW_RANDOM, DIR_OUTWARDS, DIR_INWARDS, CM_LOOP,

CM_SHUFFLE, CM_RANDOM

New functions (Macro) and defines for the SCE Metaballs effect:

void SetColorMode(int mode)

int GetColorMode()

int GetColorCount()

void RemoveColor(int idx)

void SetColor(int idx, color c)

color GetColor(int idx)

void AddColor(int idx, color c)

void SetColorMix(int mode)

int GetColorMix()

void SetSharpness(int mode)

int GetSharpness()

void SetColorMixLink(int value)

int GetColorMixLink()

CM_LOOP, CM_SHUFFLE, CM_RANDOM, MODE_CIRCLE, MODE_RECTANGLE, MODE_DIAMOND,

MODE_VERY_BLURRY, MODE_BLURRY, MODE_SLIGHTLY_BLURRY, MODE_MEDIUM,

MODE_SLIGHTLY_CLEAR, MODE_CLEAR, MODE_VERY_CLEAR

News For Script Engine Version 1.27 (MADRIX V2.10)

New universal functions:

string GetComputerName()

What is New 17

© 2014 inoage GmbH

string GetUserName()

void SetValid()

void SetInvalid()

New functions and defines for the Main Output Macro:

void SetBlackout(int mode)

int GetBlackout()

New functions for the SCE Ticker / Scrolling Text effect:

int GetFontWidth()

void SetFontWidth(int width)

int GetFontHeight()

void SetFontHeight(int height)

int GetFontItalic()

void SetFontItalic(int val)

int GetFontUnderline()

void SetFontUnderline(int val)

int GetFontStrikeOut()

void SetFontStrikeOut(int val)

int GetFontWeight()

void SetFontWeight(int val)

string GetFontFaceName()

void SetFontFaceName(string)

New Defines for SCE Shapes, S2L EQ Shapes, M2L Single Tone Shapes:

DRAW_DIAMOND, DRAW_DIAMOND_EXPLODE, DRAW_DIAMOND_IMPLODE, FILL_DIAMOND,

FILL_DIAMOND_EXPLODE, FILL_DIAMOND_IMPLODE

News For Script Engine Version 1.26 (MADRIX V2.9)

New functions for the SCE Wave effect:

void SetPeak(int peak)

int GetPeak()

New functions and defines for the SCE Fire effect:

MADRIX 2 Script Help and Manual18

© 2014 inoage GmbH

void SetMode(int mode)

int GetMode()

void SetFlameSize(int size)

int GetFlameSize()

void SetIntensity(int intensity)

int GetIntensity()

MODE_FIRE, MODE_FLAMES

New functions for effects that use the Color Ramp dialog:

void SetColor(int idx, color c)

color GetColor(int idx)

int GetColorCount()

int SetColorPosition(int idx, float position)

float GetColorPosition(int idx)

void SetColorFade(int idx, int mode)

int GetColorFade(int idx)

void FadeAllColors()

void FadeNoneColors()

void SetUniformDistances()

void InvertColorPositions()

void InvertColors()

void AddColor(color c, float position, int idx)

void RemoveColor(int idx)

New function for the Main Output Macro:

void SetColorFilter(color c)

color GetColorFilter()

News For Script Engine Version 1.25 (MADRIX V2.8a)

New universal function:

What is New 19

© 2014 inoage GmbH

string GetApplicationPath()

string GetUserProfileDirectory()

string GetScriptEngineVersion()

string GetSoftwareVersion()

int CheckScriptEngineVersion(int major, int minor)

int CheckSoftwareVersion(int major, int minor, int subminor, int subsubminor)

New function for the Main Output Macro:

int CuelistCurrentCue()

News For Script Engine Version 1.24 (MADRIX V2.8)

New universal function:

void Filter(int filter)

New functions and defines for the SCE Metaballs effect:

void SeedRandom()

void SetMode(int mode)

int GetMode()

void SetScale(float value)

float GetScale()

MODE_UNIFORM, MODE_LINEAR, MODE_QUADRATIC, MODE_SQRT, MODE_CUBIC, MODE_RANDOM

News For Script Engine Version 1.23 (MADRIX V2.8 BETA)

New universal functions:

int IsDmxInEnabled()

int GetDmxIn(int map[], int startchannel, int channels)

int GetDmxInChannel(int channel)

int GetSubMaster()

void SetSubMaster(int value)

New functions for the Main Output Macro:

int GetStorageFullState(int storage, int place)

MADRIX 2 Script Help and Manual20

© 2014 inoage GmbH

New effects with new functions:

SCE Drops

SCE Metaballs

New functions/defines for the S2L Equalizer effect:

void SetDrawMode(int mode)

int GetDrawMode()

void SetBandMode(int state)

int GetBandMode()

MODE_BAR, MODE_RADIAL, MODE_RADIAL_LINE, MODE_RADIAL_OUTLINE, MODE_RADIAL_DOT

A new function for the SCE Ticker effect:

string GetText()

Deprecated functions:

int GetSubmasterValue()

void SetSubmasterValue(int value)

New functionality of MADRIX Script, the Storage Place Macro:

float GetSpeedMaster()

void SetSpeedMaster(float value)

int GetPause()

void SetPause(int state)

int GetSubMaster()

void SetSubMaster(int value)

string GetDescription()

void SetDescription(string text)

int GetLayerCount()

int GetLayerSolo(int number)

void SetLayerSolo(int number, int state)

int GetLayerBlind(int number)

void SetLayerBlind(int number, int state)

int GetLayerSubMaster(int number)

void SetLayerSubMaster(int number, int value)

void EnableLayerFrameFade(int number, int enable)

int IsLayerFrameFadeEnabled(int number)

What is New 21

© 2014 inoage GmbH

int GetLayerMixMode(int number)

void SetLayerMixMode(int number, int mix mode)

int GetLayerLink(int number)

void SetLayerLink(int number, int state)

void MapLayerEffectVector(int number, float x, float y, float w, float h)

void MapLayerEffectPixel(int number, int x, int y, int w, int h)

void GetLayerMapPixel(int number, int map[])

void GetLayerMapVector(int number, float map[])

void MapLayerTileEffectVector(int number, float x, float y, float w, float h)

void MapLayerTileEffectPixel(int number, int x, int y, int w, int h)

void SetLayerMapModeMirror(int number, int state)

void SetLayerMapModeTile(int number, int state)

void GetLayerMapTileEffectVector(int number, float map[])

void GetLayerMapTileEffectPixel(int number, int map[])

int IsLayerMapped(int number)

int GetLayerMapModeMirror(int number)

int GetLayerMapModeTile(int number)

void SetLayerVectorTileOffset(int number, float x, float y)

void SetLayerPixelTileOffset(int number, int x, int y)

void GetLayerVectorTileOffset(int number, float map[])

void GetLayerPixelTileOffset(int number, int map[])

void SetLayerVectorMapRotation(int number, float value, int anim)

void SetLayerDegreeMapRotation(int number, int value, int anim)

float GetLayerVectorMapRotation(int number)

int GetLayerDegreeMapRotation(int number)

int IsLayerMapRotation(int number)

float GetLayerFrameId(int number)

void SetLayerFrameId(int number, float value)

float GetLayerFrameSteps(int number)

float GetLayerFrameCount(int number)

int GetLayerOpacity(int number)

void SetLayerOpacity(int number, int value)

News For Script Engine Version 1.22 (MADRIX V2.7a)

MADRIX 2 Script Help and Manual22

© 2014 inoage GmbH

New functions for the MAS Script effect, Macro, and Main Output Macro:

void SetPixelGreyscale(int x, int y)

New functions for Main Output Macro:

int GetFadeType()

void SetFadeType(int fadetype)

color GetFadeColor()

void SetFadeColor(color)

float GetFadeTime()

void SetFadeTime(float fadetime)

int GetFadeValue()

void SetFadeValue(int fadervalue)

int GetFreeze()

void SetFreeze(int freeze/unfreeze)

int GetMasterFader()

void SetMasterFader(int masterfadervalue)

int GetAudioFader()

void SetAudioFader(int audiofadervalue)

void CuelistStop()

void CuelistPlay()

void CuelistGo()

void CuelistBack()

void CuelistGoto(int cuelistentry)

int GetStorageSpeedMaster(int storage)

void SetStorageSpeedMaster(int storage, float speed)

int GetStoragePause(int storage)

void SetStoragePause(int storage, int pause/nopause)

void GetStoragePlace(int storage)

void SetStoragePlace(int storage, int place, int autofade/noautofade)

int GetStorageSubMaster(int storage)

void SetStorageSubMaster(int storage, int submastervalue)

What is New 23

© 2014 inoage GmbH

News For Script Engine Version 1.21 (MADRIX V2.7 BETA)

New functions for Macro:

void SetLink(int enable)

int GetLink()

New Macro functions for SCE Ticker effect:

void SetSmooth(int enable)

int GetSmooth()

New Macro functions for SCE Color Ramp effect:

void SetColor(int index, color col)

color GetColor(int index)

int SetPosition(int index, float pos)

float GetPosition(int index)

void SetFade(int index, int enable)

int GetFade(int index)

int GetColorCount()

News For Script Engine Version 1.20 (MADRIX V2.6e)

New functions for the MAS Script effect, Macro, and Main Output Macro:

void CreatePixelTransposeTable(int size, int growsize)

void SetPixelTransposeEntry(int idx, int srcX, int srcY, destX, destY)

void AddPixelTransposeEntry(int srcX, int srcY, destX, destY)

void ExecutePixelTranspose(int clear)

void InvertMatrix()

void InvertColor()

void Greyscale()

News For Script Engine Version 1.19 (MADRIX V2.6d)

New functions (Macro) for SCE Radial effect:

void SetCurve(int curve)

int GetCurve()

MADRIX 2 Script Help and Manual24

© 2014 inoage GmbH

void SetFactor(int factor)

int GetFactor()

void SetAmplitude(int amplitude)

void GetAmplitude()

News For Script Engine Version 1.18 (MADRIX V2.6c)

With reference to the new functionality of the SCE Video effect, there are three valid values for

the mode 'function'. NO_LOOP for no looping, F_LOOP for only forward looping and FB_LOOP for

forward and backward.

void SetLoop(int mode)

void StartVideoBackward()

void SetVideoStartTime(time t)

time GetVideoStartTime()

void SetVideoEndTime(time t)

time GetVideoEndTime()

void SetVideoPlaySpeed(float speed)

float GetVideoPlaySpeed()

void SetVideoAspectRatio(int mode)

News For Script Engine Version 1.17 (MADRIX V2.6a)

New functions for reading and modifying the opacity values for all effects.

int GetOpacity()

void SetOpacity(int value)

News For Script Engine Version 1.16 (MADRIX V2.6)

New functions (Macro) for the SCE Bounce effect.

void SetBpm(int value)

int GetBpm()

void SetObjects(int value)

int GetObjects()

void SetPoints(int value)

What is New 25

© 2014 inoage GmbH

int GetPoints()

void SetFadeOut(int value)

int GetFadeOut()

void SetSize(int size)

int GetSize()

void SetShape(int shape)

int GetShape()

void SetCollision(int state)

int GetCollision()

News For Script Engine Version 1.15 (MADRIX V2.6 BETA)

New function fmod(float denominator, float divisor), which is the modulo function for float values.

New direction parameters SHIFT_C_IN_OUT and SHIFT_C_OUT_IN for the ShiftMatrix function.

New functions for the new Map dialog of MADRIX

void SetVectorMapRotation(float value, int anim)

void SetDegreeMapRotation(int value, int anim)

float GetVectorMapRotation()

int GetDegreeMapRotation()

int IsMapRotation()

News For Script Engine Version 1.14 (MADRIX V2.5a)

There is a new script information called nam e to give a script a name.

For the SCE Color Ramp effect there is a new direction DIR_RADIAL, which could be used in a

Macro, and two new functions SetAngle(int angle) and GetAngle() for Macro.

New functions SetCurrent Im age, GetCurrent Im age und Get Im ageCount for SCE Bitmap available

to control the image list.

MADRIX 2 Script Help and Manual26

© 2014 inoage GmbH

For effects with a color table (not the M2L color table) there are several new functions available

to access the color table via Macro. This includes the following effects: SCE ColorChange, SCE

ColorFill, SCE ColorScroll, SCE Shapes, S2L Equalizer, S2L EQ Shapes, S2L LevelMeter, S2L

LevelRing and M2L SingleTones.

New button (GUI element) available for the MAS Script effect. Furthermore, a new ctrledit3-

element is available. In addition to the GUI elements ctrlslider, ctrledit and ctrlcolortable, a tooltip

has been added.

New mathematical functions round, ceil, and trunc have been added.

New functions DrawPixelArea and GetPixelArea to retrieve the content of the matrix into a script-

accessible field of colors. New functions ColorReplace, PixelColorFill and VectorColorFill.

News For Script Engine Version 1.13

GUI elements available for MAS Script effect. It is possible to create some GUI-Elements, so that

the user can give some input to the script, like colors for use or other values.

There are several new functions for strings available. Furthermore, there are different new

operations on strings available.

For case labels variables declared as constants may be used now. Moreover, it is possible to use

strings.

Access to the frame id and frame count is now available via Macro for every effect.

News For Script Engine Version 1.11

The effects SCE Bitmap, SCE Ticker, and SCE Video have the new functions GetRotat ion and

SetRotat ion.

There are new global values RED, GREEN, BLUE, AQUA, FUCHSIA, YELLOW, GRAY, SILVER,

OLIVE, TEAL, PURPLE, NAVY, MAROON for usage as color parameter for several functions.

What is New 27

© 2014 inoage GmbH

For the effect SCE ColorScroll two new functions SetFade and GetFade are available.

For the effect SCE Ticker there are the new functions SetCont inous and GetCont inous.

For the effect S2L EQ there are the new functions GetMonoc hrom e and SetMonoc hrom e.

For the effects S2L EQTubes and S2L EQDrops there are the new functions SetAm plify and

GetAm plify. In Addition, the meaning of the SetSens and GetSens functions have changed.

For the effect S2L EQ LevelMeter there are the new functions SetMonoc hrom e and

GetMonoc hrom e.

For the effect M2L ColorScroll there are several new functions and new values for the direction.

There is a new mix mode MIXMODE_MASK.

The function SetF ram eId has been added in order to control the frame ID.

News For Script Engine Version 1.10

Due to a philosophy change for setting the effects speed from frames per second (FPS) to beats

per minute (BPM), for a lot of effects there is an new SetBpm function available for the Macro.

The old SetSpeed functions are available, but declared as deprecated and my be removed during

one of the next releases of MADRIX. For further details, please have a look at the descriptions of

the single effects or of the Macro in general. The following effects are affected:

SCE Color

SCE Bitmap

SCE ColorChange

SCE Fire

SCE Plasma

SCE Radial

SCE Shapes

SCE Ticker

SCE Video

SCE Wave

S2L EQ

S2L EQ Drops

MADRIX 2 Script Help and Manual28

© 2014 inoage GmbH

S2L EQ Tubes

S2L LevelColor

S2L LevelMeter

S2L LevelRing

M2L ColorRings

M2L ColorScroll

M2L IntervalDrops

M2L IntervalTubes

During this change the meaning of the fade slider for the following effects has changed too. While

the value for fade was mostly given in frames, now it is given in BPM. The new range of possible

values for the function SetFade is now from 1 to 3000. This has been changed for the following

effects:

S2L EQ Tubes

S2L Frequency Flash

S2L LevelColor

M2L IntervalTubes

M2L SingleTones

For the M2L SingleTones effect there are new constants available to set the new drawing shapes.

Furthermore, there are new functions to set the border, pitch, and the width in percent or in pixel

in order to get more scalable effects. A new function SetColorMode exists, too. The old function

SetColor has been removed since its functionality has been removed within MADRIX, too.

There is a new effect called SCE Shapes within MADRIX, which also has its own Macro functions.

The MAS Script effect has new functions in order to have more control over a running effect,

especially when the Speed Master is used to increase or decrease speed or to run it backwards.

Hence, it is possible to build scripts which can use the frame ID. It is described here.

There are several new string functions allowing to search for substrings within strings and getting

a substring from a string. They are described in the chapter String operations.

What is New 29

© 2014 inoage GmbH

News For Script Engine Version 1.8

According to new functionality of the effect SCE ColorRamp, there are two new values for the

SetDirec t ion function.

According to new functionality of SCE ColorScroll, there are several new values for its SetDirec t ion

function.

According to new functionality of the M2L SingleTone, there are different new values for its

SetDraw Mode function as well as new functions available.

There is new functionality to read from external files or URLs using HTTP.

News For Script Engine Version 1.6

Macro Vs. MAS Script Effect

A very powerful new feature in MADRIX is the usage of macros on effects. So the result of each

effect can be manipulated by a script written in MADRIX Script. The set of available functions

within a macro is almost the same as in the scripting effect except that it has different interface

compared to MADRIX. Furthermore, there are special commands available for each effect. They

are described in the chapter Macros for Effects.

New Functions

GetValue() and GetAllValues() have been declared as deprecated functions and should not be used

anymore. Please use GetNoteValue and GetAllNoteValues instead.

For the ShiftMatrix function new shifting directions are available. Furthermore, a new function

called ShiftVec torMat r ix is now available.

According to the new matrix mapping features in MADRIX, there are new functions available to

setup mirror and tile modes as well as the t ile-settings itself.

Part

II

MADRIX Script (Introduction) 31

© 2014 inoage GmbH

2 MADRIX Script (Introduction)

2.1 Getting Started

About This Document

MADRIX Script is a scripting language within MADRIX. This document is for all those who want to

develop light effects with the help of MADRIX Script. This does not require any programming

knowledge.

The components of this language will be explained with the help of different examples. The first

step for you is to copy these examples. In the second step, you could try to change and modify

the examples. In this way, you will be able get a feeling for the programming language and the

syntax. It is the same like in real life: Skill comes with practice!

For the first steps we advise to use the MAS Script effect. So you will plainly see what a script

does. All the examples you can find in this manual are written for the script effect unless stated

otherwise.

Using MADRIX Script

MADRIX Script empowers the user to create completely new light effects. Furthermore, it can be

used to control and manipulate running effects.

There are four possibilities to use MADRIX Script. The first one is to create a new effect from

scratch (MAS Script Effect). The second involves modifying the settings of a running effect (

Macros for Effects). The third possibility controls the main output directly (Main Output Macro).

Fourth, you can use Storage Place macros to control every single Storage Place individually (

Storage Place Macro).

MADRIX 2 Script Help and Manual32

© 2014 inoage GmbH

MAS Script Effect — Create Your Own Effects

MADRIX offers numerous effects to create a light show. However, there are a lot more things that

you are not able to do with the current stock effects. The script effect, called 'MAS Scrip Effect',

provides the possibility to program your own original effects. With MADRIX Script it is possible to

put all your creative ideas into practice.

The MAS Script Effect is a normal effect of MADRIX and can

be selected from the effect list like all the other effects.

(Chapter: MAS Script Effect)

Macros For Effects — Control Running Effects

Macros are also written in MADRIX Script, but are part of an effect. With macros it is possible to

control effects (or layers) and change their results. For example, render parts of an effect

transparent or change the color with a grey filter. An example for changing the settings of an

effect is to set the text of SCE Ticker to current time.

MADRIX Script (Introduction) 33

© 2014 inoage GmbH

To run a macro for an effect, please select the "Macro" button in the effect area. The

Script Editor implemented in MADRIX will open. It is then possible to write new macros, an load or

edit existing ones. For further information see the chapter Effect Macros.

(Chapter: Macros for Effects)

Main Output Macro — Control Your Final Output

Whereas the MAS Script Effect is an individual effect in itself and while macros can be used to

manipulate single effects or layers, the Main Output Macro affects the whole output of the two

effect pipelines of MADRIX.

The button to call up the Main Output Macro can be found between the "FADE" button

and the "Freeze" button.

(Chapter: Main Output Macro)

Storage Place Macro — Control Individual Storage Place Incl. All Layers

MADRIX 2 Script Help and Manual34

© 2014 inoage GmbH

The Storage Place Macro allows you to use a macro that affects your individual Storage Place

including all layers.

The button to call up the Storage Place Macro can be found between the "Description

Field" and the "Pause" button.

(Chapter: Storage Place Macro)

2.2 Working With The Script Editor

Introduction

The editor that is an integrated part of MADRIX allows to create new MADRIX Scripts and binary

scripts. Or you can edit existing ones. Of course, you can load and save a script and start or stop

its execution.

The Script Editor Window

In the upper area of the editor, the menu bar for the most common commands is located. In the

main window below, you can enter the source code. A script can also write texts to the output

window, the Script output. The Compiler Messages box is hidden by default. It can be used to

read compiler messages, such as errors and warnings.

The position of each window can be customized by dragging their title bars. Toolbar, Script

output, and the Compiler Messages box can be shown or hidden using the menu entry "View".

MADRIX Script (Introduction) 35

© 2014 inoage GmbH

The Script output starts empty, every time you compile a script. In order to delete the messages

manually, please choose in the menu item "Edit" the point "Clear Messages". It is also possible

to clear the output of the compiler via "Clear Compiler Messages", located in the same menu.

The Script editor supports syntax highlighting which will help you to read the source code,

distinguish different types of phrases (e.g. comments, data types) and find errors. Furthermore,

the code structuring is enhanced since every line is automatically indented like the last line.

MADRIX 2 Script Help and Manual36

© 2014 inoage GmbH

Working with Scripts

Scripts, it does not matter if macros or scripts for the MAS Script effect, are stored together with

the effect. Hence, they always form part of a setup or an effect that is saved. Furthermore, it is

possible to save scripts to files in order to share them with others. Another way is to save a script

as a compiled script. This is a script which does not contain any source code, but only the runtime

code. This means that with the help of compiled scripts it is possible to share scripts, but to let

the source code remain a secret at the same time.

Creating, Loading, and Saving

Scripts

To create a new script please choose in the menu item "File" the point "New". Now, the basis for

a new script is generated. It consists of some templates for the script's meta data and several

default functions. You can edit the new script now.

If you want to save the script, please choose in the "File" menu "Save" or "Save as ...". The

latter opens a dialog for you to enter a new file name for the script and to save it in a new file.

The ending of the file will be .m as. If the file already exists, you have to confirm or cancel the

saving process. When confirming, the file will be overwritten.

When loading a script with the menu item "File" > "Open", MADRIX automatically starts the

compilation of the source code, but the script will not start by itself. Alternatively, you can use

the "Load" button in the interface of the MAS Script effect, which does not exist for Effect Macros

or the Main Output Macro. Then, an (error-free) script will run instantly.

MADRIX Script (Introduction) 37

© 2014 inoage GmbH

Compiling and Executing Scripts

Before a script can be run, it needs to be compiled. While compiling the script, it is analyzed and

translated into the binary format MADRIX works with internally. To compile your script, choose "

Compile" in the menu "Compile" (or press F5). After the script was compiled successfully, it will

be executed automatically. If the compilation fails, the script cannot be executed. An error

message will be displayer. Just double-click on the message and the cursor will jump to the

referred position. In addition, the line number is printed with each compiler message.

The execution of a script can be interrupted and continued by using the "Stop" and "Run" item in

the menu "Compile". The buttons are also available in the toolbar.

Using Compiled Scripts

A script can also be saved as a compiled script. You can find the function "Compile and Save" in

the menu "Compile" or use the shortcut F6. After a successful compilation, a dialog will be

opened in which you can enter a name for the compiled script.

Because a compiled script does not contain any source code, only the script's meta data will be

displayed in the window when you load such a kind of file. You (or others) will not be able to edit

the code.

MADRIX 2 Script Help and Manual38

© 2014 inoage GmbH

2.3 Basics

2.3.1 Writing A Script

Introduction

Generally, a script consists of many instructions, which you can enter in any desired editor. The

result is called source code or script.

In MADRIX a Script Editor is included, too. You can use it to program new scripts or to edit scripts

that already exist. Like said before, the following examples mostly refer to the MAS Script effect.

Before a script can be run, it has to be loaded into MADRIX. Please use the "Load"

button in the dialog of the MAS Script effect. The script will start automatically when loading was

successful.

The First Example

A first example of a MADRIX Script can be seen below. You can simply copy the source code and

execute it. At the moment, it is not so important to understand all the details. The example

repeatedly writes a certain text line in the output window of the editor.

Please open the Script Editor of the MAS Script Effect. Simply copy the whole example into the

Editor (and replace the existing code):

@scriptname="";
@author="";
@version="";
@description="";

void InitEffect()
{

}

void RenderEffect()
{
 WriteText("Hello World");
}

void MatrixSizeChanged()

MADRIX Script (Introduction) 39

© 2014 inoage GmbH

{
InitEffect();

}

Then, "Complile" the script (to be found in menu "Script" or use the key F5). The function

WriteT ext (st r ing text) writes a given character string into the output window of the Script Editor.

In this case it is "Hello World". You should see this message in the output area.

You can save the script by choosing "File > Save as ...".

2.3.2 Syntax Highlighting

Overview

MADRIX 2 Script Help and Manual40

© 2014 inoage GmbH

As you can see from the screenshot above, MADRIX Script highlights code according to a color

scheme (syntax highlighting).

@scriptname, SetFilter Represents functions that can only be used in certain areas of MADRIX

Script (for example, Storage Place Macro.

void Represents data types.

MADRIX Script (Introduction) 41

© 2014 inoage GmbH

FILTER_BLUR Represents global variables and constants.

Filter, WriteText Represents functions that can be used in all areas of MADRIX Script (MAS

Script Effect, Macros for Effects, Storage Place Macro, Main Output

Macro)

"Hello World" Represents written text for output.

2.3.3 Identifiers

Identifiers are the names of functions or variables. They start with a letter or an underline (_).

Other letters, underlines, or numbers can follow afterwards. The exception to this are all

characters that do not belong to the English alphabet, e.g. 'ä' or 'é'. There is no restriction for the

length of an identifier. Furthermore, there is a distinction between capitalized letters and the use

of small letters. For example, Nam e and nam e are two different identifiers.

Examples for valid identifiers: textFunc , _testVar2, new , NEW, New _12340

Examples for invalid identifiers: 12help, 1234, grösser, st raße

MADRIX 2 Script Help and Manual42

© 2014 inoage GmbH

2.3.4 Functions

Working With Functions

A script in MADRIX Script consists of a set of functions. Some of them are necessary and called

by MADRIX. Others may be used to split the script into smaller parts. Functions form a small parts

of a script and hold a number of statements. They can be called from other parts of the script in

order to execute their statements. Having statements used outside of functions is not allowed in

MADRIX Script.

Creating Functions

Functions consist of a head and a body. The head describes the name of the function, its

parameters, and its return value. Whereas, the body includes a block of statements, like this one:

void function(int p)
{
 if(p * p > 2)
 do something;
 do something more;
}

The first data type, stated in front of the function, describes the kind of value the function

returns and it may be of any known data type. In the case above, no value is returned by the

function and therefore void is declared. The actual name of the function can be any name that

follows the rules of identifiers in MADRIX Script as was discussed above. But it has to be unique. It

is not allowed to have several functions with the same name or with the name of global variables

or constants.

The parameter list following the name of the function may be left empty, but it is necessary to

keep the brackets (). Different parameters are separated by comma. A parameter can take on any

data type possible. Here are three examples for function declarations:

void setPixel(int point[])
{
 do something
}

int[] CreatePoint(int x, int y)
{

MADRIX Script (Introduction) 43

© 2014 inoage GmbH

 do something
}

string getTag()
{
 do something
}

Passing Parameters In MADRIX Script

Parameter are always passed via copy by value. (The exception are fields.) This means that a

parameter may be used as another local variable of a function. Changing the value of a variable

does not change the variable the caller has provided. Please note: For fields a reference is

created. Hence, changing a field results also in changing the field of the caller.

void testFunc(int i, int ia[])
{
 i = 5;
 for(int n = 0; n < i; ++n)
 {
 ia[n] = n * n;
 }
}

void RenderEffect()
{
 int testField[];
 int len = 2;
 testFunc(len, testField);
}

In testFunc the parameter i is set to 5 and the field that is passed is filled with several values.

After the return of the function in RenderEffec t, the field is now filled with the values set in

testFunc. Whereas the variable len has not changed and still has a value of 2.

Please note: Passed parameters are always copied to a function, while this is not the case with

fields.

MADRIX 2 Script Help and Manual44

© 2014 inoage GmbH

Returning A Value

To return a value, the return statement must be used followed by an expression. The given

expression must result in the same or at least a compatible data type of the declared function's

type. It must be the last statement of any function which returns a value unequal to void. In

addition, return can be used to leave a function early. For void functions return will be used

without an expression. Here are some examples:

int[] CreatePoint(int x, int y)
{
 int res[] = {x, y};
 return(res);
}

string getTag()
{
 date d = GetDate();
 switch(d.weekday)
 {
 case 0: return("Sunday"); break;
 case 1: return("Monday"); break;
 case 2: return("Tuesday"); break;
 case 3: return("Wednesday"); break;
 case 4: return("Thursday"); break;
 case 5: return("Friday"); break;
 case 6: return("Saturday"); break;
 } return("unknown day");
}

Functions Called By MADRIX

There are several functions called by MADRIX in order to let the script react to different events.

void InitEffect()

void RenderEffect()

void PreRenderEffect()

void PostRenderEffect()

void MatrixSizeChanged()

MADRIX Script (Introduction) 45

© 2014 inoage GmbH

If a function is not needed by a script, it is not necessary to implement it. Regarding InitEffec t

and RenderEffec t a message is printed out if one of them is missing. This is not an error, but only

an information for the developer of the script. Please note that each component of the MADRIX

Script language (MAS Script Effect, Macros, Main Output Macro, Storage Place Macro) may

include a different combination of these five functions as this is just an overview.

I nitEffec t

InitEffec t is called by MADRIX whenever the script needs to be initialized. This is the case after

compiling and starting a new script or when the user pressed the "Start" button of the Script

editor. A script can assume that any global variable is initialized with 0 and that any global field is

empty as long as it has not been initialized with any value.

This function is the right place to initialize global variables, reset any fields, set the speed of an

effect, or whatever is necessary to (re)start the script.

RenderEffec t

This function is called whenever the effect needs to be rendered. The number of calls per second

depends on the currently set speed of the effect. It can be received with the help of thefunction

GetSpeed and set with the function SetSpeed. This is the right place to calculate the effect and

draw it onto the matrix.

PreRenderEffec t

This function is called directly before RenderEffec t. In contrast to the other functions, this one is

requested by a script. In order to have this function called, you have to call DoPreRender. It may

be used if the script has to initialize any settings before an effect is rendered.

void InitEffect()
{
 DoPreRender();
}
void PreRenderEffect()
{
 color c = {random(0, 255), random(0, 255)}; Clear(c);
}

This example uses the function PreRenderEffec t to fill the matrix once after initializing a random

color for this task.

MADRIX 2 Script Help and Manual46

© 2014 inoage GmbH

PostRenderEffec t

This function is called directly after RenderEffec t. After an effect has been rendered completely,

certain functions might want to be called. That could be a filter, for example.

MartrixSizeChanged

Mat ixSizeChanged is called after the size of the matrix has been changed. This may be due to a

change to the matrix settings. Or because new map settings were set, e.g. caused by the call of

a map function.

Further Information

There are a lot of functions which can be used to draw objects the matrix, get the data of the

sound analysis, or mathematical functions which can be used by a script. The summary contains

a complete list about all available functions within MADRIX Script.

2.3.5 Data Types & Variables

In MADRIX Script variables may be used to store different data. Each variable will be defined with

a certain data type. This data type describes the kind of values the variable can store and the

operations which are possible with the variable. Here is a small example to get a feeling for

variables.

The following source code renders a yellow pixel on a random position each time RenderEffec t is

called. This is the script "SetRandomPixel":

void RenderEffect()
{

 color col = {255, 255, 0, 0};
 int px,py;
 px = random(0,GetMatrixWidth()-1);
 py = random(0,GetMatrixHeight()-1);
 SetPixel(col, px, py);

 //a color variable called 'col' is declared and its values are set to yellow (RGB)
 //two variables of type int are declared to store the coordinates of a pixel
 //coordinates for x and y inside the matrix are chosen by chance
 //the pixel is drawn on the matrix

MADRIX Script (Introduction) 47

© 2014 inoage GmbH

}

2.3.5.1 Using Variables

Introduction

In order to use a variable it must be declared first. This is done by stating the data type of the

variable and a name, followed by a semicolon. Furthermore, it is possible to initialize them during

the declaration using an equal sign. This means that a particular value can be assigned to the

variable already during initialization. Here are some examples:

int i;
float f;

int k = 4;
string text = „Hello World“;
int width = GetMatrixWidth();

A structure is initialized with a list of expressions separated by comma and written in curly

brackets.

color white = {255, 255, 255, 255, 0};
color red = {255};
date d = {24, 11, 1980};

If not all elements of a structure are initialized, the rest will be set to 0.

Constants

It is also possible to declare a variable as a constant. Those variables cannot be changed while

the script is running and must be initialized during their declaration. They may be used to give

different values names to simplify the reading of the script code. For example, there is a global

constant called PI. To declare a variable as a constant use the keyword c onst.

const int width = 10;
const int maxPixel = 20 * width;

MADRIX 2 Script Help and Manual48

© 2014 inoage GmbH

Global And Local Variables

A variable exists within the block in which it has been defined. This may be a function or a block

like it is described in statements. It does not exist outside this area. A variable i, which was

defined in the function RenderEffec t, does not exist in any other function. Whenever such a block

is entered, due to a function call, a loop or something different, the variable is re-initialized.

Because of that, a local variable loses its assigned value between two calls of the function.

Global variables are available within the whole script beginning at the position of their definition.

They can be used to hold data during the run of a script. Global variables do also exist between

two calls of RenderEffec t. If the script needs to hold data between to runs, global variables are

the correct way to do this.

int g_iPos = 0;
void RenderEffect()
{
 SetPixel(WHITE, g_iPos, 0);
 g_iPos = (g_iPos + 1) % GetMatrixWidth();
}

g_iPos is increased by 1 each time the script is called. It is used to determine the new position of

a pixel set to white.

void InitEffect()
{
 g_iPos = 0;
}

int g_iPos = 0;

void RenderEffect()
{
 SetPixel(WHITE, g_iPos, 0);
 g_iPos = (g_iPos + 1) % GetMatrixWidth();
}

This script will fail since g_iPos is unknown in function InitEffec t. It has been declared after this

function. In this way, only RenderEffec t can use it.

MADRIX Script (Introduction) 49

© 2014 inoage GmbH

Saving Data

Effects in MADRIX can be stored to a single file or into a whole setup file. Furthermore, it is

possible to change a Storage Place to show another effect. If a script effect is reloaded with a

compiled and running script, InitEffec t is called and the script starts from the beginning.

Sometimes it is useful that a script does not start from its beginning (let's say a black matrix) but

from the same state where it was when it has been stored or the Storage Place has been

changed.

The values of global variables do not only remain between two calls of a script, but may be stored

when the effect is saved, too. Therefore, the variable should be declared as persistent.

persistent int g_iPos;

Whenever the script is saved, the content of g_iPos is also saved. It is loaded again, when the

script is loaded. This loading procedure is executed after InitEffec t has been called. Even if the

variable is originally initialized in InitEffec t, it will contain the saved data after InitEffec t has been

called, nevertheless.

More Information

In MADRIX Script several constants are defined by default. They may be used to make the source

code more legible. The summary contains an overview with all available global variables and

constants.

MADRIX 2 Script Help and Manual50

© 2014 inoage GmbH

2.3.5.2 Using Data Types

Primitive Data Types

The example before used two variables with two different data types. Variables offer the

possibility to store data. The kind of data depends on the data type. MADRIX Script supports the

following primitive data types:

Data Type Exemplary Values Description

int 3, -345, 234, 0 32 bit data type. It stores integral numbers between -2 million and +2
million.

float 0.0, -12.45, 3.1415 32 bit data type. It stores floating point numbers.

string "Hello World", "-3" Stores character strings of variable length.

bool true (1), false (0) Used for implicit use of logical values and comparisons.

Data Type Bool

The data type bool is only used internal and cannot be used to declare a variable. This data type

only has to possible values, t rue or fa lse. It is used for logical operations or for different

statements like the if statement. For example, the following expression results in a bool data type

and fa lse as its value.

3 > 4
int i = 3 > 4 //results in 0
int i = 3 < 4 //results in 1

//usually it is used like this
if(3 > 4)
{
 do something
}

True And False

Like said before, a boolean expression results only in true or false.

Furthermore, the keywords true and false are used within MADRIX Script as function parameters or

return values. Those parameters or functions are of the type int . In such cases t rue and fa lse

represent 1 and 0, respectively. They can be used in upper case (T RUE / FALSE) and lower case (

t rue / fa lse).

MADRIX Script (Introduction) 51

© 2014 inoage GmbH

Non-Primitive Data Types - Structures

Complex data types, so-called structures, consist of different elements. The elements of a

structure are accessed by their names in the following way: nam eOfVariable.nam eOfElem ent . For

example, c ol.r, if c ol is a variable of data type c olor. The following table is an overview of the

structures MADRIX Script provides.

Structure Elements Description

color int r
int g
int b
int w
int a

co lor stores a color value.
There are 5 channels (red, green, blue, white, alpha) with values
between 0 and 255.

Example: color c = {255, 255, 0, 0};
Members examples: c.r, c.g, c.b, c.w, c.a

»Script Example

date int day
int weekday
int month
int year

date stores a date.
Values for days include 1 to 31 for a single day of the month.
Values for weekdays include: 0 = Sunday, 1 = Monday, ..., 6 =
Saturday.
Values for month include 1 to 12 for every single month of the
year.
Vales for year include year dates.

Example: date d = {24, 11, 1980};
Members examples: d.day, d.weekday, d.month, d.year

»Script Example

time int hour
int min
int sec

tim e stores a time.
Valid values are: hours: 0 .. 23, minutes: 0 .. 59, seconds: 0 .. 59.

Example: time t = {12, 05, 00};
Members examples: t.hour, t.min, t.sec

»Script Example

MADRIX 2 Script Help and Manual52

© 2014 inoage GmbH

2.3.5.3 Conversion Between Data Types

Introduction

If there are different data types within an expression, they must be converted into the same type.

MADRIX Script does those conversions implicitly, but in most times a warning will be displayed in

the compiler message box of the Script Editor. It is also possible to do those conversions explicitly

writing the destination data type in brackets before the expression, like this:

int i = (int)GetSpeed(); //if the speed was 42.8, i is now 42
string s = (string)i; //s now consists of the characters "42"

GetSpeed returns a float value which has to be converted into int before it can be assigned to i.

Be aware that the positions after the decimal point are abridged. Afterwards, the numeric value is

assigned to i.

The following table shows an overview over possible conversions:

int float string structure bool
expressions

int - Converts the
value to float.

Converts the
value to string:
e.g. 12 = "12".

N/A
Is true if the
value is not 0.

float Converts the
value to int. The
decimal part is
truncated
without rounding
off.

- Converts the
value to string:
e.g. 12.34 =
"12.34"

N/A

Is true if value is
not 0.

string If the string is a number, the string
is converted into an integer value,
otherwise it results in 0.

-
N/A

Is true if string is
not empty.

structure

N/A

Conversion
between
different
structures: N/A.

N/A

Implicit Conversions With Math Expressions

If one of the two operands of a math expression is of the type float and the other is of the type

int, the int value is converted to float and the expression results in the data type float.

MADRIX Script (Introduction) 53

© 2014 inoage GmbH

If one of the two operands of a math expression is of the type st r ing, the other operand is

converted into a string and the expression results in a string.

If the conversion is not possible according to the table above, the compiler prints an error and you

have to correct the expression. Here are some examples of expressions and their results:

Expression Result Explanation

int i = 3 / 4 * 2 0 3 / 4 is an intege r operation and results in 0. Hence, the whole
expression results in 0.

3 / 4.0 * 2 1.5 Because 4.0 is a float value, 3 will be converted into float, too. In
this way, 3 / 4.0 results in 0.75. Then, 2 is also converted into
float since the other operand is of the type float. And the result is
therefore 1.5.

string test = "It is "
+ 9 + " o'clock."

"It is 9 o'clock." Since the first operand is a string, 9 is also converted into a string
and concatenated with the first string.

string test = 2 + 3 +
"40"

"540" 2 & 3 are both integer and will be added up due to an integer
operation. The second operation has a string as operand and
therefore the other operand will be converted into a string and
both are concatenated together.

2.3.5.4 Fields

Basics

Many programming languages provide arrays, vectors, lists or any other data type to store

dynamic data. Dynamic data is not known yet when the program is written. For such tasks

MADRIX Script provides dynamic fields. They are declared like variables, followed by [].

int aiIntField[]; //a 1-dimensional field of integer values
date adDateField[]; //a 1-dimensional field of dates
float aafFloatField[][]; //a 2-dimensional field of float values

It is also possible to initialize fields using a list of values. These are described by values separated

with commas and written in curly brackets.

//initialize a field with 5 integer values
int aiIntField[] = {2, 3, 4, 5, 6};

MADRIX 2 Script Help and Manual54

© 2014 inoage GmbH

The operator [expression] provides access to the elements of a field. The expression must result

in an integer or compatible value. The lowest index of a field is 0. This means the first entry of a

field is always indexed with 0; a field does not start with 1, but 0. When an element is accessed,

the field grows automatically in order to provide the requested element. It is not necessary nor

possible to request the size of a field explicitly. Here is an example to access a field with integer

values.

int aiIntField[];
aiIntField[0] = 10;
aiIntField[1] = 20;
aiIntField[2] = aiIntField[3];

After the last access the field will have a length of 4 because 3 was the last accessed element.

The initial value of an element is "0" or an empty string or false. The length-attribute of a field

tells the current size of a field, which is the number of currently provided elements.

The Length Or Size Of Fields

Each field has a length-attribute. It can be accessed through the "."-operator which is also used

to access elements from a structure.

int l = aiIntField.length; //store length of the field in l

Please note: The length of a field is defined by the highest index that was used to request an

element.

Multidimensional Fields

Up to this point, one-dimensional fields were introduced. But multidimensional fields are also

possible. To declare a multidimensional field, a "[]" must be added to its declaration for each

dimension. Up to now, the only limit to the number of possible dimensions is set by the resources

of the computer on which the script is running. It is also possible to initialize fields using a list of

elements for each dimension. Here are some examples:

int aaField[][]; //a 2-dimensional field
int aaaField3[][][]; //a 3-dimensional field

//initializes the field with two dimensions and three values each

MADRIX Script (Introduction) 55

© 2014 inoage GmbH

int aaField2[][] = {{2, 3, 4}, {6, 7, 8}};

//a 2-dimensional field of color elements
color aaCField[][] = {
 { {0, 0, 0, 0, 255}, {255, 255, 255}, {255, 255} },
 { {255 }, {255, 255, 255} },
 { {0, 255, }, {255, 255, 255} } };

The operator [expression] accesses a single element of a field, which for a multi dimensional field

may be another field. In order to access a single element, the applicable index must be used. For

example, the 5th element must be accessed with the index 4, while the first entry has the index 0.

The same is true for the attribute length. It returns the length of the currently accessed field.

Here are two examples:

int aaField[][];
int aField1[] = {1, 2, 3, 4, 5, 6}; //intialize the field

aaField[0] = aField1; //assign aField1 to the first element of aaField
aaField[0][aField1.length] = aField1.length + 1;
aaField[1][0] = 1;
aaField[1][2] = 2;

Explanation: At the end of this example aaF ie ld consists of two fields of int values. The first one

has a length of 7 and the second one a length of 3 (due to the access of the element with the

index 2). These lengths can be received by reading the length attributes.

WriteText("Number of fields in aaField: " + aaField.length);
WriteText("Number of elements in aaField[0]: " + aaField[0].length);
WriteText("Number of elements in aaField[1]: " + aaField[1].length);

Memory Management Of Fields

Although the memory for a field is dynamic you have to think of it beforehand. Think about the

following example:

int aiField[][];
aiField[10000][10000] = 1;

After the assignment, the field has indeed a size of 10.000 x 10.000 elements of int-values. An int

value needs four bytes and 10.000 * 10.000 * 4 = 4.0000.0000 bytes, add up to around 382

megabytes (MB) of memory. So please pay attention when using very big fields.

MADRIX 2 Script Help and Manual56

© 2014 inoage GmbH

Full Example

This example just plays with the fields and its content. It is just to show how to work with fields

and to get a feeling for them. A better example is given in the chapter Loops.

void InitEffect()
{
 SetSpeed(1);
}

void RenderEffect()
{
 int aaField[][];
 int aField1[] = {1, 2, 3, 4, 5, 6}; //intialize the field

 aaField[0] = aField1; //assign aField1 to first element of aaField
 aaField[0][aField1.length] = aField1.length + 1;
 aaField[1][0] = 1;
 aaField[1][2] = 2;

 WriteText("Number of fields in aaField: " + aaField.length);
 WriteText("Number of elements in aaField[0]: " + aaField[0].length);
 WriteText("Number of elements in aaField[1]: " + aaField[1].length);

 WriteText("Element of aaField[0][0]: " + aaField[0][0]);
 WriteText("Element of aaField[0][1]: " + aaField[0][1]);
 WriteText("Element of aaField[0][2]: " + aaField[0][2]);
 WriteText("Element of aaField[0][3]: " + aaField[0][3]);
 WriteText("Element of aaField[0][4]: " + aaField[0][4]);
 WriteText("Element of aaField[0][5]: " + aaField[0][5]);

 WriteText("Element of aaField[1][0]: " + aaField[1][0]);
 WriteText("Element of aaField[1][1]: " + aaField[1][1]);
 WriteText("Element of aaField[1][2]: " + aaField[1][2]);
}

2.3.5.5 Strings & String Operations

MADRIX Script provides several functions to manipulate strings, find substrings, and to perform

many more operations.

MADRIX Script (Introduction) 57

© 2014 inoage GmbH

Operations On Strings

Assigning Data Types

It is possible to assign integer, float , and st r ings to another st r ing like shown in the following

example:

string s;
string t;
s = t;
s = "Hello world";
s = 5;
s = 3.5;

Furthermore, it is possible to assign single characters of a st r ing to a character of another st r ing

like shown below:

string s, t;
s = "New";
t = "new";

s = t;
s[0] = t[0];

Furthermore, it is possible to assign a double quoted st r ing to a character of a st r ing. But the

assigned st r ing must have exactly one character. Here is an example:

string s;
s[0] = "T";
s[1] = "1";
s[2] = ".";

The following lines are invalid and will result in a compiler error since the given st r ings have more,

or less than one character:

s[0] = "New"; //given string has three character but not one
s[0] = ""; //given string is empty

MADRIX 2 Script Help and Manual58

© 2014 inoage GmbH

Comparing Two Strings

As it is possible to compare two numbers using the compare operators, it is also possible to

compare two st r ings. The following table provides an overview of the possible operations.

Operator Description

str1 == str2 Checks for the equality of two strings.

str1 != str2 Checks for the inequality of two strings.

str1 < str2 Checks if the first string is less than the second string.

str1 <= str2 Checks if the first string is less or equal to the second
string.

str1 > str2 Checks if the first string is greater than the other
string.

str1 >= str2 Checks if the first string is greater or equal to the other
string.

Please note: It is not possible to compare fields of st r ings.

Like in the case of assignments, it is also possible to compare single characters of a st r ing against

a double-quoted st r ing with exactly one character:

if(s[0] == "A") ...
else if(s[0] == "!") ...
...

It is also possible to compare single characters of a st r ing against integer numbers:

if(s[0] == 1) ...
else if(s[0] == 2) ...

This also works for the switch/case statements. But the "1" as a label of a case means that the

same as the 1. So the following two case labels mean the same and this would result in a compiler

error:

string s = "1";
switch(s[0])
{
 case "1": do something; break;
 case 1: do something else; break;
 case "A": do something; break;
 //is also valid to check for letters and other characters
 ...
}

MADRIX Script (Introduction) 59

© 2014 inoage GmbH

Using Strings Within Switch/Case Statements

Another possibility is to use double-quoted st r ings of one character in case of labels. The following

theoretical example demonstrates this:

string s = "New";
for(int i = 0; i < s.length; ++i)
{
 switch(s[i])
 {
 case "A": do something; break;
 case "B": do something else; break;
 case "!": do something; break;
 }
}

Functions For Strings

Function Description

int findstring(int startIndex, string text, string
substring)

This functions looks for the substring in the given text.
The search starts at the given startIndex. The first
character has an index of 0. The function starts its
search at a specified position of the entire tex t using
sta rtIndex and returns an index that describes the
position at which the substring begins. If the substring
is not found, -1 is returned.

string substring(string text, int startIndex, int count) The function extracts count characters from the given
tex t starting with sta rtIndex. If count is -1, all
characters of the string starting at sta rtIndex are
returned.
c

int rfindstring(int startIndex, string text, string
substring)

This functions looks for the substring in the given text
from its end to the beginning. The function starts its
search at a specified position of the entire tex t using
sta rtIndex and returns an index that describes the
position at which the substring begins. If the substring
was not found, -1 is returned.

int startswith(string text, string substring) This function checks if the tex t string starts with the
given substring. If tex t starts with substring, true is
returned, otherwise fa lse.

int endswith(string text, string substring) This function checks if the tex t string ends with the
given substring. If tex t ends with substring, true is
returned, otherwise fa lse.

int isalnum(string text) Returns true if the given string contains only characters
and figures and its length is greater then 0, otherwise
fa lse is returned.

int isalpha(string text) Returns true if the given string contains only characters
and its length is greater than 0, otherwise fa lse is
returned.

MADRIX 2 Script Help and Manual60

© 2014 inoage GmbH

int isnum(string text) Returns true if the given text represents a number.
This may be an integer number or a floa ting point
number (e.g. 1.3). Otherwise it returns fa lse.

void tolower(string text) Converts each character of the given string into a
lower-case character.

void toupper(string text) Converts each character of the given string into an
upper-case character.

void strip(string text) Removes leading and ending white spaces like space,
tabulator, line feeds and so on from the given string.

int strcmp(string str1, string str2) Compares two given strings with each other. If they
are equal, 0 is returned. -1 is returned if str1 is less
than str2. A value of 1 is returned if str1 is bigger than
str2.

void replace(string src, string old, string new) Replaces any appearances of o ld within src with new.

void tokenize(string src, string delimiter, string reslist
[])

Separates the string src into smaller pieces delimited
by characters within de lem ite r. The result is returned
in res list. See below for further details.

Tokenizing Strings

The function tokenize enables you to tokenize a string. The single tokens will be delimited by the

characters within the second parameter. Each character identifies a single delimiter. The following

examples show the usage of the function and the results.

string s = "Have a wonderful,nice day".
string res[];
tokenize(s, " ,", res);

string s = "one two,three";
string res[];
tokenize(s, "," , res);

Explanation:

The variable res of the first example will be filled with the following five values: {Have; a;

wonderful; nice; day}

The res-variable of the second example will be filled with the following two values: {one two;

three}

The result of the second example will contain only two entries. "one tw o" is only one entry since

the tokens of the second example are only delimited by coma but not by space.

MADRIX Script (Introduction) 61

© 2014 inoage GmbH

Splitting Strings With White Spaces

There is a constant called WHITE_SPACES which can be used as delim iter in order to split a text

by any white spaces like tabulator, new line, or space.

string s = "Have a wonderful, nice day".
string res[];
tokenize(s, WHITE_SPACES, res);

//or another example which also uses the comma as delimiter
tokenize(s, WHITE_SPACES + ",", res);

Examples

Substring

This example extracts a part from a st r ing. Insert the source code into the function RenderEffec t.

As the result "World" should be printed in the output window of the Script Editor.

string txt = "Hello World";
string subText = substring(txt, 6, 5); //retrieves "World" from txt
WriteText(subText);

(Description)

MADRIX 2 Script Help and Manual62

© 2014 inoage GmbH

2.3.6 Expressions

Introduction

Expressions are used to calculate values. Additionally, they can be assigned to variables or given

as parameters to functions. If an expression is followed by a semicolon, it is called an expression

statement. There are different operators available to write expressions.

Operands For An Expression

An expression is formed of operands and operators. The number of operands depends on the

operator. There are unary operators, which use only one operand such as "-". And there are binary

operators, which need two operands like "+".

Operands of an expression can be function calls, variables, constant values like "5" or another

expression within brackets like (3 + 5).

Assignment Operator

To assign any value to a variable the assign-operator "=" is used in the following way:

variable = expression;

The expression after the "=" may be any complex expression. But it has to be compatible with the

given variable after the conversion rules of MADRIX Script.

float f = cos(0.5);
float f2 = f;

MADRIX Script (Introduction) 63

© 2014 inoage GmbH

Math Operations

'++'/'--' Operator

The ++ and -- operators are unary operators and only defined for usage with variables of the type

int. They are used like this:

i++;
i--;

They increment/decrement the variable by one. This operator is known from C/C++. This

programming language offers two possible ways of using them, as suffix and as prefix operators (i+

+ and ++i). In MADRIX Script they are currently only available as suffix operators (i++) and they

work in that way. Such a suffix operator results in the current value of the given variable and

afterwards increments/decrements it.

int i = 4;
i = i++ * 2;

In the end, i is 8. In the first line, 4 is assigned to the integer value i. In the second line, the

expression i++ results in 4. The multiplication therefore is "4 * 2" which results in 8. This value is

assigned to i and therefore, i = 8.

'-' Operator

The "-" operator is also available as unary operator and negates the value of the given operand. It

supports int- and float-values.

-4;
-i;
-(3 * 5);

The "+" operator may also be used as unary operator, but it does not make sense because it does

not change the result of an expression.

Binary Operations

The operators +, -, * and / support int and float values and cause a usual arithmetical addition,

subtraction, multiplication, and division of the two operands.

i = 4 + 4 * 5;
i = (4 + 4) * 5;
i = 4 / 5;

MADRIX 2 Script Help and Manual64

© 2014 inoage GmbH

Operator precedence rules are considered. Note that operations with integer values result in

integer values and are done as integer operations. So 3 / 4 does not result in 0.75 as may be

expected, but in 0. To get a result of 0.75, at least one of the operators must be a float value. An

example would be 3.0 / 4, where the 4 is also converted into a float-value.

Concatenating Strings

The "+" operator can also be used to concatenate strings together.

string s = "Hallo " + "Welt";

If one of the two operands is of the type st r ing, the other one is converted and the two strings

are concatenated together.

int i = 4;
string s = 4 + "th run";

This example results in "4th run". Please note that the following example may be misinterpreted

since the first part of the expression is of the type integer and will result in an integer. It is then

 converted and concatenated into one string.

string s = 3 + 4 + "th run";

The resulting string is "7th run" and not, as perhaps sometimes expected "34th run".

Modulo Operation

The modulo operation calculates the integer remainder of an integer division. The operator in

MADRIX Script for modulo operations is %.

10 % 2;

The operator % is only defined for int values.

Additional Assignment Operations

To have less code and increase readability, there are additional assign operators: +=, -=, *=, /=,

%=.

i += 3 + 4

MADRIX Script (Introduction) 65

© 2014 inoage GmbH

is the same as

i = i + (3 + 4)

and so on. The resulting source code is much more easy to read.

Operations Of Comparison

With operations of comparison you can test two expressions for a certain relation. Possible

comparisons (and operators) are "less than" (<), "less equal" (<=), "more than" (>), "more

equal" (>=), "equal" (==) and "not equal" (!=). Make sure that you can distinguish the meaning of

a single equal sign (assignment operator) and a double equal sign (compare operator). Operators

of comparison always return a bool value, the comparison is either t rue or fa lse.

i > 4
3 < j

Logical Operations

The '!' Operator

The !-operator is an unary operator, which logical negates the value of the given expression. fa lse

becomes t rue and vice versa.

!3
!(3 > 4)
!"Hallo Welt"

'And'/'Or' Operator

The and and or-operators are logical operators. They need operands of the data type bool and

always result in a bool-value. In MADRIX Script the and-operator is expressed via "&&" and the or-

operator is declared with "||".

Unlike C/C++, in MADRIX Script both operands are always evaluated. So, even if the first operand

of an "&&" - operator results in fa lse, this means that the whole expression will be fa lse. But the

second operand will be calculated, too. Here some examples for using those operators:

int i = i || j
int i = (3 < 4) || (4 > 3)

MADRIX 2 Script Help and Manual66

© 2014 inoage GmbH

Those operations are usually used within statements, which require to make a decision like the if-

statement as described later on.

Using Operands Of Different Data Types

Operands are automatically converted, e.g. from bool to int, when making an assignment (see

also Conversion Between Data Types).

int i = GetMatrixWidth() > GetMatrixHeight();
int j = (2 * sin(PI) * i) + (2 * cos(PI) * !i);

In the first line, the resulting bool-value of the ">"-operator is implicitly converted into int and

results in 0 or 1. In the second line, the 2 in both expression parts is converted to float since the

sin and the c os functions result in float. The same holds true for the operands i and !i.

Full Example

The following example uses different expressions to calculate the coordinates on which the next

pixel is to be set. It also calculates the color of the next pixel.

int g_point[];
persistent color g_color;
void InitEffect()
{
 g_point[0] = 0;
 g_point[1] = 0;
 color c = {random(0, 255), random(0, 255), random(0, 255), random(0, 255)};
 g_color = c;
 SetSpeed(50);
}

void RenderEffect()
{
 //calculate the color for the next pixel
 g_color.r += (int)(255.0 * (0.5 + 0.5 * sin(g_point[0] * g_point[0])));
 g_color.g += (int)(255.0 * (0.5 + 0.5 * cos(g_point[0] * g_point[1])));
 g_color.b += (int)(255.0 * (0.5 + 0.5 * sin(g_point[0] - g_point[1])));
 g_color.w += (int)(255.0 * (0.5 + 0.5 * sin(g_point[0] + g_point[1])));

 //make sure, colors are only between 0 and 255
 g_color.r %= 256;
 g_color.g %= 256;
 g_color.b %= 256;

MADRIX Script (Introduction) 67

© 2014 inoage GmbH

 g_color.w %= 256;

 setPixel(g_point);
 //setup the next point, x++
 //if x > MatrixWidth x = 0 and y++
 //if y > MatrixHeight y = 0
 g_point[0] = (g_point[0] + 1) % GetMatrixWidth();
 g_point[1] = ((int)(g_point[0] == 0) * 1 +
 g_point[1]) % GetMatrixHeight();
}

void setPixel(int pt[])
{
 SetPixel(g_color, pt[0], pt[1]);
}

2.3.7 Statements

Introduction

There are different statements available in a script, for example the if-statement or the call

statement to call functions. Those will be described later on in this chapter. Another statement is

the expression statement. A statement is an expression statement if it is followed by a semicolon.

For example:

i = i + 1;
InitEffect();

Using Blocks

A block is started and finished (opened and closed) with the help of curly brackets. Blocks may be

used to group different statements together. There are also different statements which require a

block if more than one statement should be executed. For example the w hile or the if statement

are good examples.

MADRIX 2 Script Help and Manual68

© 2014 inoage GmbH

2.3.7.1 'If' & 'Else If' Statements

'If' Construct

Very often it is necessary to make decisions within a script. You could for example want to use

red as your background color every day if it is after 9 a.m. Or for example, it could be your wish to

clear the matrix and change the color if the matrix has been filled up completely. Therefore, in

MADRIX Script the keywords if and e lse exist. The may be used like this:

if(condition)
 statement
else
 statement

The first statement is executed if the given condition is t rue or unequal to 0. Otherwise the

second statement, stated after e lse, is executed.

Statem ent may include a single statement or a block of statements and the e lse-part is optional.

Here are some examples for the if-statem ent:

if(x % 2 == 0)
{
 col.r = 0;
 SetPixel(col, x, y);
}
else
{
 col.r = 255;
 SetPixel(col, x, y);
}

if(testPixel(x, y) != 0)
{
 SetPixel(WHITE, x, y);
}

if(x + 2 > y)
 y++;

It is important to consider that an e lse always refers to the last if-statement. However, blocks

may be used to make the intention clear. To give you a demonstration, please consider the

following example. It may be interpreted wrong since i will be incremented if the j > i-condition

fails and not if the i > 3-condition fails like it is implied by the given e lse.

MADRIX Script (Introduction) 69

© 2014 inoage GmbH

if(i > 3)
 if(j > i)
 j = i;
else
 i++;

To let the compiler create the correct code, use blocks:

if(i > 3)
{
 if(j > i)
 j = i;
}
else
 i++;

'Else If' Construct

Else if is an additional structure to implement decisions. It may be used like this:

if(condition)
 statement
else if (condition)
 statement

Like described above, e lse is always followed by a statement. And if is such a statement. Then, it

is logical that an e lse may be directly followed by an if. The e lse if structure is very useful to make

code with lot a lot of decisions more readable. It enables you to check for different conditions,

which shall only be checked if the previous condition was passed successfully. Here is an example

which selects another color for different days. Simply copy it and paste it in the function

RenderEffec t.

date t = GetDate();
color c;
if(t.day < 31)
 c.r = 255;
else if(t.day <= 21)
 c.g = 255;
else if(t.day <= 11)
 c.b = 255;
else
 c = WHITE;
Clear(c);

MADRIX 2 Script Help and Manual70

© 2014 inoage GmbH

Full Example

The following example renders a blinking cross onto the matrix. Instead of using random colors,

predefined colors will be used. During each call of RenderEffec t, the color will be chosen.

color colCross = {0, 255, 255, 255};
int g_iCol;

void InitEffect()
{
 g_iCol = 0;
 SetSpeed(1.0);
}

void RenderEffect()
{
 int x, y;
 if(g_iCol == 0)
 {
 colCross.r = 255;
 g_iCol = 1;
 }
 else if(g_iCol == 1)
 {
 colCross.r = 155;
 g_iCol = 2;
 }
 else
 {
 colCross.r = 0;
 g_iCol = 0;
 }

 for(int x = 0; x < GetMatrixWidth(); x++)
 for(int y = 0; y < GetMatrixHeight(); y++)
 {
 if(x == y)
 SetPixel(colCross, x, y);
 else if(GetMatrixWidth() - x-1 == y)
 SetPixel(colCross, x, y);
 else
 SetPixel(BLACK, x, y);
 }//for[each line]
}

MADRIX Script (Introduction) 71

© 2014 inoage GmbH

2.3.7.2 'Switch' Statements

Introduction

If it is required to compare an integer variable with a lot of different values, using of the if-

statement may be very exhausting. In this case the sw it c h-statement may help. It has the

following syntax:

switch(expression)
{
 case label1:
 list of statements
 case label2:
 list of statements
 default:
 list of statements
}

The expression must result in int or a compatible data type which can be converted implicitly. The

default -label is optional. The label must result in a constant value and since Version 1.13 of

MADRIX Script, it is possible to use integer values like "0" or "12", constant variables, or double-

quoted strings like "A". After the colon one or more statements may follow, but blocks are also

allowed. Moreover, each label has to be unique.

Labels are not an independent block of source code, but a marker where the code execution

should be continued if the expression has the corresponding value. So after execution of the

statements for labe l 1 the statements of labe l 2 will be executed and so on. In order to avoid that

behavior, use the keyword break. If the expression does not match any of the given labels, the

execution will be continued with the default -label.

The following sample code writes the name of the current day into the message window of the

editor.

date d = GetDate();
switch(d.weekday)
{
 case 0: WriteText("Sunday"); break;
 case 1: WriteText("Monday"); break;
 case 2: WriteText("Tuesday"); break;
 case 3: WriteText("Wednesday"); break;
 case 4: WriteText("Thursday"); break;
 case 5: WriteText("Friday"); break;
 case 6: WriteText("Saturday"); break;
}

MADRIX 2 Script Help and Manual72

© 2014 inoage GmbH

Now, we are also able to shorten the usage of the if-statement in the following way:

color colCross = {0, 255, 255, 255};
int g_iCol;

void InitEffect()
{
 g_iCol = 0;
 SetSpeed(1.0);
}

void RenderEffect()
{
 int x, y;
 switch(g_iCol)
 {
 case 0:
 colCross.r = 255;
 g_iCol = 1;
 break;
 case 1:
 colCross.r = 155;
 g_iCol = 2;
 break;
 default:
 colCross.r = 0;
 g_iCol = 0;
 break;
 }//switch[current color]
 for(int x = 0; x < GetMatrixWidth(); x++)
 {
 for(int y = 0; y < GetMatrixHeight(); y++)
 {
 if(x == y)
 SetPixel(colCross, x, y);
 else if(GetMatrixWidth() - x-1 == y)
 SetPixel(colCross, x, y);
 else
 SetPixel(BLACK, x, y);
 }//for[each line]
 }
}

Using Constant Variables

As was said before, it is possible to use variables declared as constants, but it is necessary that

the compiler is able to compute the value during compilation time. Here is an example with a valid

as well as an invalid case label.

const int label1 = 1;
const int label2 = GetMatrixWidth();

MADRIX Script (Introduction) 73

© 2014 inoage GmbH

switch(<something>) {
 case label1: do something
 break;
 case label2: do something else
 break;
}

The first label (label1) is a valid case label since the compiler is able to compute the value of 1

during compilation time. The second label (label2) is invalid since it is computed during runtime and

therefore it is not a constant value for the compiler, even though it is not possible to change its

value later on.

The following examples are all valid case labels since the compiler can compute their values:

const int label1 = 2 + 4;
const int label2 = label1 + 3;
const int label3 = label2;

Using Double-Quoted Strings

It is also possible to use double-quoted strings for case labels. But they have to have the length

of 1. Here is an example:

void writeText(string s)
{
 for(int i = 0; i < s.length; i++)
 {
 switch(s[i])
 {
 case "A": do something; break;
 case "B": do something with b; break;
 ...
 }
 }
}

MADRIX 2 Script Help and Manual74

© 2014 inoage GmbH

2.3.7.3 'For' & 'While' Loops

Introduction

Loops are used in programming languages to repeat tasks. For example, every pixel should be set

to a green color. Loops run as often as a given condition is true. MADRIX Script offers two

possible forms of loops, the for loop and the w hile loop. Both are similar to the loops in the

programming language C.

'While'-Loop

The w hile-loop is built in this way:

while(condition)
 statement

The statem ent may be a single expression statement. If more then one statement needs to be

executed, a block is needed, as shown in the following example:

int x = 0;
while(x < 10)
{
 SetPixel(WHITE, x, 0);
 i++;
}

'For'-Loop

The for-loop is built like this:

for(initialization; condition; expression)
 statement

This is the same as:

initialization;
while(condition)
{
 statement;
 expression;
}

MADRIX Script (Introduction) 75

© 2014 inoage GmbH

The init ia lizat ion-part may contain the declaration of a new variable or an expression. It is

executed the first time the loop runs. There may be different initializations separated by comma.

Newly declared variables only exist within the for-loop. After init ia lizat ion, the c ondit ion is

checked. If it is unequal to 0, the given statement is executed. (In this respect, a value of 0

represents fa lse. But a while loop will only be executed, if the condition is true. And true is

represented by a value of 1, which in turn is unequal to 0.)

The c ondit ion-part contains an expression. As long as the given expression is not 0 or fa lse, the

given statement is executed. If the c ondit ion-part is empty as discussed beneath, it will be

interpreted as t rue.

The expression in the expression-part is executed each time before running the statem ent and

before checking the c ondit ion. But not the first time. There may be different expressions

separated by comma.

It is possible to leave different parts of the for-loop empty. But semicolons are necessary,

nevertheless. This may be used to implement the initialization outside the loop. Here are three

examples for for-loops. The first one is an endless loop:

for(; ;)
{
 do anything;
}

for(int x = 0; x < GetMatrixWidth(); x++)
 for(int y = 0; y < GetMatrixHeight(); y++)
 SetPixel(WHITE, x, y);

for(int x = 0; x < GetMatrixWidth(); x++)
{
 if(x % 2)
 DrawPixelLine(WHITE, x, 0, x, GetMatrixHeight());
 else
 DrawPixelLine(BLACK, x, 0, x, GetMatrixHeight());
}

MADRIX 2 Script Help and Manual76

© 2014 inoage GmbH

Controlling Loops: 'Break' And 'Continue'

There are two possibilities to control a loop. First, it is possible to interrupt the execution of a loop

(break). Furthermore, there is a way to skip the rest of the statements of the loop and to go to

its beginning (continue).

'Break'

With the keyword break a loop can be quit immediately. For example:

int x = 0;
while(x < 10)
{
 if(i >= GetMatrixWidth())
 break; //leave loop now!

 SetPixel(WHITE, x, 0);
 x++;
}

The execution of the script is continued after the loop. No other statement within the loop is

executed after break.

'Continue'

With the keyword c ont inue it is possible to skip the rest of the statements within a loop and to

start anew. For example:

int x = 0;
while(x < 10)
{
 if(x % 2 == 0)
 continue;
 SetPixel(WHITE, x++, 0);
}

Examples

'While' Loop

The following example "cos" draws parts of a cosinus curve onto the matrix while changing the

background color.

void InitEffect()
{

MADRIX Script (Introduction) 77

© 2014 inoage GmbH

 SetSpeed(1);
}

void RenderEffect()
{
 color col = {200, 200, 100, 200};
 color colBK={random(0,150), random(0,255), random(0,100), random(0,255)};
 //set background
 Clear(colBK);
 //draw cosine curve
 int px = 0;
 int py = 0;
 float y;
 float t = 0;
 while(px < GetMatrixWidth())
 {
 y = cos(t) * GetMatrixHeight();
 py = (int)y;
 t = t + (PI * 3 / GetMatrixHeight());
 px++;
 SetPixel(col, px, py);
 }//while[x < GetMatrixWidth()]
}

'For' Loop

Here is another full example which uses fields to store random colors and to fill the matrix with

them.

persistent color g_MatrixColors[][];
void RenderEffect()
{
 //select random color
 color col = {random(0,255), random(0,255), random(0,255), random(0,255)};

 //select random pixel coordinates
 int px = random(0,GetMatrixWidth()-1);
 int py = random(0,GetMatrixHeight()-1);

 //save the selected color
 g_MatrixColors[px][py] = col;

 //draw points of the field
 for(px = 0; px < GetMatrixWidth(); px++)
 {
 for(py = 0; py < GetMatrixHeight(); py++)
 {
 SetPixel(g_MatrixColors[px][py], px, py);
 }//for[each line]
 }//for[each column]
}

void InitEffect()
{

MADRIX 2 Script Help and Manual78

© 2014 inoage GmbH

 for(int x = 0; x < GetMatrixWidth(); x++)
 for(int y = 0; y < GetMatrixHeight(); y++)
 {
 g_MatrixColors[x][y].r = 0;
 g_MatrixColors[x][y].g = 0;
 g_MatrixColors[x][y].b = 0;
 g_MatrixColors[x][y].w = 0;
 }
 SetSpeed(5);
}

2.3.8 Reading From External Files

Asynchronous File Reading

The function

int ReadAsync(string file, string txt)

reads content as text from a file into the string txt. The file is opened and closed automatically.

There is no "open" function like in other programming languages. The parameter file may contain a

filename of a local file, like "C:\config.txt". In addition, the HTTP protocol is supported. That

means it is possible to retrieve data from a web server. For example: "http://www.madrix.com".

The following examples would read some content from different files.

string txt;
ReadAsync("C:\config.txt", txt);
ReadAsync("http://www.testserver.de/testfile.txt");

Here is an example which reads some numbers from a file and renders a curve on the matrix.

float g_pos[] = {0.8, 0.5};
string file = "C:\temp\src.txt";
string txt;

void InitEffect()
{
 SetSpeed(2.0);
}

void RenderEffect()
{
 ShiftVectorMatrix(0.0, 0.0, 1.0, 1.0, SHIFT_LEFT, 0.1);
 ReadAsync(file, txt);
 float f = (float)txt;

 DrawVectorLine(WHITE, g_pos[0], g_pos[1], g_pos[0] + 0.1, f);
 g_pos[1] = f;

MADRIX Script (Introduction) 79

© 2014 inoage GmbH

}

Let's take for example a program which writes the temperature from an external sensor connected

to your USB interface to the file and MADRIX draws the curve onto a matrix. As described later on,

it would also be possible to write a macro for the SCE Ticker effect to display the values as text.

The function can return several codes/status updates for different scenarios:

Value Description

FILE_OK The function could read the file without problems.

FILE_NOT_EXIST The specified file does not exist. This is returned if a local file has been
specified that is not there. If the file was a HTTP request, this error is
returned when the file does not exist on the host.

FILE_ERROR This is returned if any error occurred while reading the content of a local
file.

INVALID_HOST This value is returned if the file was a HTTP request and the specified host
does not exist.

NETWORK_ERROR This value is returned on any network error, e.g. if no network adapter is
available or the connection between the host and the client has been
disconnected.

Example

For testing purposes there are two scripts which deliver random numbers at the end of this

chapter. Or you could play with this test set-up.

@scriptname="ReadAsync Test Set-Up";
@author="";
@version="";
@description="";

string file = "C:\temp\src.txt"; //location of the source text file
string txt;
int interval = 600000; //interval = 10 minutes

void InitEffect()
{

SetReadAsyncInterval(file, interval);
}

void PreRenderEffect()
{
 switch(ReadAsync(file, txt))

{
case FILE_OK : WriteText("FILE_OK"); SetText(txt); break; // txt is displayed
case FILE_NOT_EXIST : WriteText("FILE_NOT_EXIST");break;

MADRIX 2 Script Help and Manual80

© 2014 inoage GmbH

case FILE_ERROR : WriteText("FILE_ERROR");break;
case NETWORK_ERROR : WriteText("NETWORK_ERROR");break;
case INVALID_HOST : WriteText("INVALID_HOST");break;
default : break;
}

}

void PostRenderEffect()
{

}

Detailed Information About 'ReadAsync'

As you can see, it is neither necessary to explicitly open the file nor to close it. During the first

call of the function, the specified file is opened. File reading happens asynchronously, which

means that the function immediately returns a value but does not wait for the physical reading.

Internally, the file will be read and the content is stored in a buffer. The function itself just reads

from this buffer. This also means that after the first call of the function, it is more likely that no

text will be read. There is a big advantage of this behavior. It is not necessary for the script to

wait for potentially long reading times, which may occur, especially if you read content from

internet servers.

Setting The Reading Interval

The file will be continuously read in the background. ReadAsync always receives the result of the

last reading process. It is possible to control the interval of the reading process. The default value

is 1000ms which means that an opened file will be read one time each second. The function

int SetReadAsyncInterval(string file, int interval)

sets the reading interval for a certain file. The int interval is given in milliseconds. The minimum

reading interval is 10 ms. Imagine your sensor writes data every 500 ms. Therefore, you can set

the interval to 500ms in order to let MADRIX instantly show the values. Or you can set it higher,

e.g. to 5000 ms (5 seconds), in order to save resources.

MADRIX Script (Introduction) 81

© 2014 inoage GmbH

If the file in question has not been opened yet, e.g. by a call of ReadAsync, the file will be opened

to beginn internal reading. It makes sense to set the reading interval within the InitEffec t function

in order to have the content of the file read before the first call of ReadAsync , which is perhaps

located in RenderEffec t.

Tips For Using Files In MADRIX Script

Up to now, MADRIX Script is not designed to operate on strings. There aren't any proper functions

available that may help you to parse strings or even manipulate them. Furthermore, such

functionality requires a lot of computing time, which is not necessarily available within MADRIX and

therefore within MADRIX Script. It may be better to have external tools (e.g. python scripts, PHP,

or Visual basic scripts) which prepare files for MADRIX in order to have faster scripts.

Another interesting possibility is to have interactive scripts. Imagine a small application which

retrieves input from an user and writes it to a file. A script may read the file and react to the

input.

The following scripts are external scripts which may be used to test the script above or to play

around with the reading functionality of MADRIX Script. Both scripts deliver random numbers using

a local file or via HTTP request.

A Python Script To Create Random Numbers

The following script creates random values between 0 and 1 and writes them to the file "C:

\tem p\src .txt ". In order to use a different file, set the file variable in the third line of the script to

a different one. Please do not forget to change the script above to read the same file. Each

second one value is written. In order to test HTTP functionality, this script may also run on a web

server and you can request the written file from the web server.

import time
import random

file = "C:/temp/src.txt"

while True:
 f = random.random()
 s = "%.2f" % f
 try:
 wf = open(file, "w")
 wf.write(s)

MADRIX 2 Script Help and Manual82

© 2014 inoage GmbH

 wf.close()
 except:
 print "Can't open file"

 print "Wert %.2f" %f

 time.sleep(1)

A PHP Script To Create Random Numbers

The following PHP script delivers a random number between 0 and 1 each time it is called.

<?php
 echo (rand() / getrandmax()) . "\n";
?>

2.3.9 Using Comments

During your study of this manual, surely you have encountered source code examples with text

that is not part of the actual script. These so-called comments are a help for the programmer and

other users of the script. There are two different kinds of comments in MADRIX Script.

Single line comments are induced with "//" and they end at the end of the line.

//This is a comment about a single line
//This is the next line

Multi-line comments are induced with "/*" and end with "*/". You have the possibility to inherit

any comments in multi-line comments.

/* a comment starts here
 /*
 one comment more
 */

*/ end of the complete comment

Comments are used for a better readability and understandability of the source code.

2.3.10 Including Extra Information

It is possible to provide some additional information about a script. This includes a script name, a

MADRIX Script (Introduction) 83

© 2014 inoage GmbH

version number, the author's name, and a description. The information is visible within a script,

because it is written into the Script Editor's input field if it has been loaded as compiled script.

Here is an example on how the information can be included:

@name="Name of the script"
@version="1.24";
@author="MichaelK";
@description="Any text which describes the following script.";

As shown above, information is set using the following syntax:

@INFORMATION="any string";

Values after "=" have to be a string within double quotes. Therefore, it is also possible to set

version to "1.2a" or any other string. Please note case sensitivity. It is not possible to set any of

the values within a function and it is recommended to write the information at the beginning of a

script. Overwriting one of the values results in a warning. The summary contains an overview

about the information that can be included in a script.

2.4 Advanced Techniques

Overview

The following chapters describe advanced techniques for rendering effects or manipulating

settings.

First, several higher functions are described which will foster your knowledge about MADRIX Script.

Then map and tile settings as well as usage of mix modes is described in detail. Additionally, we

included information referring to Sound2Light and Music2Light and how it can be used to create

and manipulate effects.

2.4.1 Draw And Render Functions

MADRIX Script provides some low level drawing functions, like SetPixe l, or functions to draw lines,

circles, etc. But there are also more complex functions. Those are described in the following

chapters.

MADRIX 2 Script Help and Manual84

© 2014 inoage GmbH

2.4.1.1 Pixels Vs. Vectors

Introduction

For some effects, like the random SCE Color Fill, the matrix size does not matter. The matrix will be

filled up with pixels, whatever the size of the matrix is. But what about an effect that draws

vertical lines onto the matrix from top to bottom. It is easily possible to write such an effect for a

well-known matrix size. The disadvantage is that if the size of the matrix changes or if someone

else wants to use the script, it has to be changed to fit the new matrix size. Or you could be

aware of the matrix size and calculate the number of pixels for the line to be drawn.

To have an easier way to create effects that are scalable, MADRIX Script provides two versions

for the majority of render functions. One returns exactly the pixel coordinates as parameters and

the other gets relative coordinates between 0.0 and 1.0.

Rules Of Calling Functions

Overview

The name of a draw or render function always starts with a description of what it does, like Draw

or F ill. It is followed by Pixe l or Vec tor to describe whether the function gets pixel coordinates or

relative coordinates. The final part describes the application of the function, like Rec t or Line. Here

are some examples:

FillPixelRect - Fills a rectangle

DrawVectorCircle - Draws an unfilled circle

ShiftPixelMatrix - Shifts the matrix

MADRIX Script (Introduction) 85

© 2014 inoage GmbH

Using Absolute Coordinates

Functions with Pixe l in their name operate on absolute pixel values. Picture a rectangle which is

drawn from x=5, y=5 with a size of 10. The object will always be rendered starting from 5, 5 to

15, 15, on each matrix. On the one hand, the rectangle appears to be very small on larger

matrices. On the other hand, it seems to be bigger on small matrices because it fills a larger area

of the matrix.

Using Relative Coordinates

Functions with Vec tor in their name operate on relative values. 0, 0 stands for the upper left

corner of the effects matrix. 1.0 describes its lower right corner, or its whole length and height. A

rectangle which is drawn from 0.25 with a size of 0.5 will look the same on every matrix. Its size is

simply the half of the matrix size. On a matrix with more pixels the rectangle is also drawn with

more pixels compared to fewer pixels on a smaller matrix. Whereas the usage of absolute

coordinates dictates the utilization of the same amount of pixels.

2.4.1.2 Using Colors

Basically, there are three different possibilities an effect allows to choose a color.

Color Picker/FaderBox

Some simpler effects, such as SCE Color or SCE Pulse/ Stroboscope, only support one particular

color at a time. Then, make use of the following functions:

MADRIX 2 Script Help and Manual86

© 2014 inoage GmbH

Function Description

void SetColor(color col) Sets the color for the effect.

color GetColor() Returns the currently set color.

Please note: Some effects may have deviant functions, such as SetFilterColor or SetTextColor.

Example

Insert the following example into the Effect Macro Editor of the SCE Color effect.

@scriptname="Color Picker Example";
@author="";
@version="";
@description="";

 color c = {111,111,111};

void InitEffect()
{

}

void PreRenderEffect()
{
 SetColor(c);
}

void PostRenderEffect()
{
 color g = GetColor();
 WriteText("Red: "+(string)g.r+", Green: "+(string)g.g+", Blue: "+(string)g.b);
}

MADRIX Script (Introduction) 87

© 2014 inoage GmbH

Color Ramp (Control)

The Color Ramp appears in effects, like SCE Color Ramp, SCE Plasma, or S2L Waveform. Use the

following functions to set the colors:

Please note: Not all effects may support all functions.

Function Description

void SetColor(int index, color c) Sets the co lo r c at the specified index in the Color Ramp. If index
is out of range, nothing happens.

color GetColor(int index) Returns the co lo r with the specified index in the Color Ramp. If
the index is out of range, b lack is returned.

int GetColorCount() Returns the amount of colors currently used by the Color Ramp.

void AddColor(color c, float position, int
fade)

Adds another co lo r c to the Color Ramp at the specified position.
Valid values for position range from 0.01 to 0.99. If the index is
lower or equal to 0, the new color is added to the first position. If
index is greater than the current number of colors, the new color
is added at the end. Valid values for fade are 1 (On) or 0 (Off).

void RemoveColor(int index) Removes the color at the specified index. If the given index is out
of range, nothing happens.

int SetColorPosition(int index, float
position)

Sets the color of the given index to a new position and returns the
new index. Valid values for position range from 0.01 to 0.99. The
first and last color are not allowed to be moved!

float GetColorPosition(int index) Returns the color position of the given index.

void SetColorFade(int index, fade) Sets the color fade option for the given index. Valid values for
fade are 1 (On) or 0 (Off).

int GetColorFade(int index) Returns the color fade option for the given index.

void FadeAllColors() Enables color fade for all colors in the Color Ramp.

void FadeNoneColors() Disables color fade for all colors in the Color Ramp.

void SetUniformDistances() Sets uniform distances between each color in the Color Ramp.

void InvertColorPositions() Inverts the positions of the colors in the Color Ramp.

void InvertColors() Inverts every single color in the Color Ramp.

Example

MADRIX 2 Script Help and Manual88

© 2014 inoage GmbH

Insert the following example into the Effect Macro Editor of the SCE Color Ramp effect.

@scriptname="";
@author="";
@version="";
@description="";

 color c = {222,222,222};

void InitEffect()
{

}

void PreRenderEffect()
{
 SetColor(2,c);
int n = GetColorCount();
WriteText((string)n);

}

void PostRenderEffect()
{
 color g = GetColor(2); //the color index starts with 0
 WriteText("Red: "+(string)g.r+", Green: "+(string)g.g+", Blue: "+(string)g.b);
}

Color Ramp (Dialog)

The Color Ramp Dialog appears in effects, like SCE Fire, S2L Equalizer, and S2L Level Meter. Use

the following functions to set the colors:

Please note: Not all effects may support all functions.

MADRIX Script (Introduction) 89

© 2014 inoage GmbH

Function Description

void SetColor(int index, color c) Sets the co lo r c at the specified index in the Color Ramp. If index
is out of range, nothing happens.

color GetColor(int index) Returns the co lo r with the specified index in the Color Ramp. If
the index is out of range, b lack is returned.

int GetColorCount() Returns the amount of colors currently used by the Color Ramp.

void AddColor(color c, float position, int
fade)

Adds another co lo r c to the Color Ramp at the specified position.
Valid values for position range from 0.01 to 0.99. If the index is
lower or equal to 0, the new color is added to the first position. If
index is greater than the current number of colors, the new color
is added at the end. Valid values for fade are 1 (On) or 0 (Off).

void RemoveColor(int index) Removes the color at the specified index. If the given index is out
of range, nothing happens.

int SetColorPosition(int index, float
position)

Sets the color of the given index to a new position and returns the
new index. Valid values for position range from 0.01 to 0.99. The
first and last color are not allowed to be moved!

float GetColorPosition(int index) Returns the color position of the given index.

void SetColorFade(int index, fade) Sets the color fade option for the given index. Valid values for
fade are 1 (On) or 0 (Off).

int GetColorFade(int index) Returns the color fade option for the given index.

void FadeAllColors() Enables color fade for all colors in the Color Ramp.

void FadeNoneColors() Disables color fade for all colors in the Color Ramp.

void SetUniformDistances() Sets uniform distances between each color in the Color Ramp.

void InvertColorPositions() Inverts the positions of the colors in the Color Ramp.

void InvertColors() Inverts every single color in the Color Ramp.

Example

Insert the following example into the Effect Macro Editor of the S2L Equalizer effect and monitor

the Color Ramp dialog.

@author="jky";
@version="1.0";
@description="change second color from colorramp";
float pos;

void InitEffect()
{
 pos=0.0;
}

void PreRenderEffect()
{

MADRIX 2 Script Help and Manual90

© 2014 inoage GmbH

 if(GetColorCount()>2)
 {
 pos+=0.01;
 pos=fmod(pos,1.0);
 SetColorPosition(1,pos);
 }
}

void PostRenderEffect()
{}

MADRIX Script (Introduction) 91

© 2014 inoage GmbH

Color Table

SCE Bounce and SCE Shapes are two exemplary effects that use the so-called Color Table. Use

the following functions to set the colors:

Function Description

void SetColor(int idx, color c) Sets the color with the specified index to the given color value. If
the index is out of range, nothing happens.

color GetColor(int idx) Returns the color with the specified index in the color table. If the
index is out of range, b lack is returned.

int GetColorCount() Returns the current number of colors in the color table.

void AddColor(int idx, color c) Adds another color to the color table at the specified index
position. If the index is lower or equal to 0, the new color is added
to the first position. If the index is greater than the current number
of colors, the new color is added at the end.

void RemoveColor(int idx) Removes the color at the specified index. If the given index is out
of range, nothing happens.

Please note: Not every function might be available for each MADRIX Effect. Also, some MADRIX

effects require at least 2 entries in the Color Table. You will not able to overwrite this requirement

with a script. The S2L Level Ring effect always includes 3 entries. You cannot add or delete the

number of colors, only the colors itself.

Example

Insert the following example into the Effect Macro Editor of the SCE Bounce effect.

@scriptname="";
@author="";

MADRIX 2 Script Help and Manual92

© 2014 inoage GmbH

@version="";
@description="";

 color c1 = {255,255,255};
 color c2 = {255,0,0};

void InitEffect()
{
 AddColor(2,c2);
 RemoveColor(3);
}

void PreRenderEffect()
{
 SetColor(2,c1);
 int n = GetColorCount();
 WriteText((string)n);

}

void PostRenderEffect()
{
 color g = GetColor(2); //retrieving color 3, the color index starts with 0
 WriteText("Red: "+(string)g.r+", Green: "+(string)g.g+", Blue: "+(string)g.b);
}

2.4.1.3 Predefined Colors

There are several predefined colors available for usage with draw functions. They are almost the

same colors like known from HTML. The following table provides an overview. The white channel of

these colors is 0.

Color Description

WHITE White color without alpha.

BLACK Black color without alpha.

RED Red color without alpha.

MAROON Maroon color without alpha.

GREEN Green color without alpha.

MADRIX Script (Introduction) 93

© 2014 inoage GmbH

MADRIX_GREEN MADRIX green without alpha.

BLUE Blue color without alpha.

NAVY Navy color without alpha.

AQUA Aqua color without alpha.

TEAL Teal color without alpha.

FUCHSIA Fuchsia color without alpha.

PURPLE Purple color without alpha.

YELLOW Yellow color without alpha.

OLIVE Olive color without alpha.

GRAY Gray color without alpha.

SILVER Silver color without alpha.

2.4.1.4 Using Filters

Introduction

You can use filters in order to render your output differently.

The functions looks as follows:

void Filter(int filter);

This function basically works whenever a matrix is used, which is the case with the MAS Script

Effect, Macros for Effects, the Main Output Macro, and the Storage Place Macro. Insert the

function into PostRenderEffec t in order to use it.

MADRIX 2 Script Help and Manual94

© 2014 inoage GmbH

Filters are useful tools to manipulate every MADRIX effect, videos, and images.

Several filters can be applied/used at the same time.

For MAS Script Effect, Macros for Effects, and the Storage Place Macro you can also use:

void SetFilter(int filter);

Types Of Filters

Filters are divided into several groups: general filters, blur/sharpen filters, color correction filters,

color mask filters, style filters, transformation filers.

Constants for Filters / Storage Place and Layer Effects (FX)

General Filters

int FILTER_NONE Deactivates the filter.

Blur/Sharpen Filters

int FILTER_BLUR This filter blurs the output.

int FILTER_BLUR_BSPLINE This filter blurs the output applying a B-spline.

int FILTER_BLUR_CATMULL_ROM This filter blurs the output applying a Catmull-Rom
spline.

int FILTER_BLUR_GAUSS This filter blurs the output applying the Gaussian
function.

int FILTER_BLUR_MITCHELL This filter blurs the output applying the Mitchell-
Netravali function.

int FILTER_SHARPE This filter sharpens the output.

Color Correction Filters

int FILTER_BRIGHTEN The brighten filter to light up the whole matrix.

int FILTER_DARKEN The darken filter to darken the whole matrix.

int FILTER_GREYSCALE The greyscale filter to render the matrix greyscale, i.e.
in grey colors.

int FILTER_INVERT_COLOR The invert color filter to invert every color channel.

Color Mask Filters

MADRIX Script (Introduction) 95

© 2014 inoage GmbH

Constants for Filters / Storage Place and Layer Effects (FX)

int FILTER_RED The red filter to filter out every color except the red
color channel.

int FILTER_GREEN The green filter to filter out every color except the
green color channel.

int FILTER_BLUE The blue filter to filter out every color except the blue
color channel.

int FILTER_WHITE The white filter to filter out every color except the
white color channel.

int FILTER_RED_GREEN The red/green filter to filter out every color except the
red and the green color channel.

int FILTER_RED_BLUE The red/blue filter to filter out every color except the
red and the blue color channel.

int FILTER_GREEN_BLUE The green/blue filter to filter out every color except the
green and the blue color channel.

int FILTER_RED_WHITE The red/white filter to filter out every color except the
red and the white color channel.

int FILTER_GREEN_WHITE The green/white filter to filter out every color except
the green and the white color channel.

int FILTER_BLUE_WHITE The blue/white filter to filter out every color except the
blue and the white color channel.

int FILTER_RED_GREEN_BLUE The red/green/blue filter to filter out every color
except the red, the green, and the blue color channel.

int FILTER_RED_GREEN_WHITE The red/green/white filter to filter out every color
except the red, the green, and the white color channel.

int FILTER_RED_BLUE_WHITE The red/blue/white filter to filter out every color except
the red, the blue, and the white color channel.

int FILTER_GREEN_BLUE_WHITE The green/blue/white filter to filter out every color
except the green, the blue, and the white color
channel.

Style Filters

int FILTER_EDGES The edges filter to make the edges of objects/motifs
stand out.

int FILTER_EDGES_POPUP The edges popup filter to make the edges of objects/
motifs stand out.

int FILTER_EMBOSS The emboss filter to create an image with just
highlights and shadows.

int FILTER_EMBOSS_POPUP The emboss popup filter to create an image with just
highlights and shadows depending on the motif.

Transformation Filters

int FILTER_INVERT_H_MATRIX The filter flips the matrix horizontally.

int FILTER_INVERT_V_MATRIX The filter flips the matrix vertically.

int FILTER_INVERT_HV_MATRIX The filter flips the matrix horizontally and vertically.
Therefore it instantly rotates the matrix by 180°.

MADRIX 2 Script Help and Manual96

© 2014 inoage GmbH

Example

Paste the following example into the Main Output Macro Editor to see how this filter inverts all

colors of your main output.

@scriptname="Filter: Invert Colors";
@author="";
@version="2.8";
@description="";

void InitEffect()
{}

void PreRenderEffect()
{}

void PostRenderEffect()
{
 Filter(FILTER_INVERT_COLOR);

}

2.4.1.5 'ShiftMatrix'

The shifting function allows you to move the content of the matrix into a given direction. It is

declared as following:

void ShiftPixelMatrix(int x, int y, int w, int h, int dir, int step)

void ShiftVectorMatrix(float x, float y, float w, float h, int dir, float step)

Again there are two possibilities. One is used with absolute pixel coordinates and values, and one

uses relative coordinates and values between 0 and 1.

x, y , w, and h define the pixel area that should be shifted. step defines how many pixels the

content should be shifted into a given direction, specified by dir. For dir the SHIFT _ direction

values are allowed. If the value of dir is invalid, the default direction SHIFT_TOP will be used.

The following script fills the matrix with yellow and draws a red cross onto it during initialization.

During the rendering the content of the whole matrix is shifted downwards. Hence, the cross is

moving to the bottom of the matrix. You can simply copy and paste it.

void InitEffect()
{
 color colbg ={255,255};

MADRIX Script (Introduction) 97

© 2014 inoage GmbH

 color col ={255};
 Clear(colbg);
 DrawVectorCross(col,0.0,0.0,1.0,1.0);
}

void RenderEffect()
{
 ShiftPixelMatrix(0,0,GetMatrixWidth(),GetMatrixHeight(),SHIFT_DOWN,1);
}

The script also demonstrates an important behavior of the function. As one can see, the matrix

remains yellow, but the cross moves to the bottom. Furthermore, red lines will be drawn on the

left and right side. This is due to the fact that the Shift function copies the complete content of

the matrix and redraws this picture on the new position. While the the content is moeved into the

given direction, the original matrix is left unchanged. This leaves the first pixel "line" unchanged in

our example.

2.4.1.6 'DrawPixelArea'

Two specific functions will be described in this chapter. First, MADRIX Script provides a function to

be able to retrieve the content of a specific area of the matrix. Second, there is a function which

is able to draw pixels onto the matrix using the obtained data field(s) as source.

Retrieving Content Of The Matrix

The function GetPixe lArea retrieves data from the matrix and stores it into a 2-dimensional field of

colors. Data is stored in the background at a certain position of the virtual matrix.

void GetPixelArea(matrix[][], int xSrc, int ySrc, int w, int h,
int xDst, int yDst)

Explanation:

m atrix[] is a 2 dimensional field of colors in which the content of the virtual matrix is saved.

xSrc , ySrc describe the position of the source area (upper left corner). The default values are 0.

MADRIX 2 Script Help and Manual98

© 2014 inoage GmbH

w , h describe the width and height of the source area. The default values are -1.

A value of -1 means that the whole width or height of the virtual matrix will be retrieved (the

complete matrix).

xDst and yDst describe the position of the destination area (upper left corner). The default

values are 0.

The retrieved field will be stored in the background. It will be stored at a certain position of a

matrix in the background. As such, you can define an individual target destination.

This behavior allows you, for example, to retrieve multiple source areas by calling GetPixe lArea

several times and to draw them only once by calling Draw Pixe lArea one time (see below).

If your field is larger than your target destination allows, it will be reduced to fit the size of the

virtual matrix.

In order to retrieve the whole matrix into the given field, it is possible to just call:

color matrix[][];
GetPixelArea(matrix);

Summary: You can store the complete virtual matrix or only parts of it in a field. The field can be

stored at the default position or an individual position. The field is stored on a matrix in the

background. The background matrix acts as source for Draw Pixe lArea. It can contain several

fields.

Drawing Content Onto The Matrix

The function Draw Pixe lArea copies data from a 2-dimensional field of colors from the background

and renders it onto the actual matrix.

void DrawPixelArea(matrix[][], int xDst, int yDst, int w, int h,
int xSrc, int ySrc, color filter)

Explanation:

m atrix[] is a 2-dimensional field of colors that holds the source for Draw Pixe lArea. Use

GetPixe lArea as described above to retrieve the data.

MADRIX Script (Introduction) 99

© 2014 inoage GmbH

xDst, yDst describe the destination area. The default values are 0.

This allows you to draw the field onto the default position of your virtual matrix or an individual

position.

If the source field is larger than your target destination allows, it will be reduced to fit the size

of the virtual matrix.

w, h describe the width and height of the render area. The default values are -1.

A value of -1 means that the whole width or height of the given field will be copied to the virtual

matrix (the complete field).

xSrc, ySrc describe the source area. The default values are 0.

Draw Pixe lArea can use and render the complete background matrix that was retrieved with

GetPixe lArea. Or it can only access and render a certain part of it.

f ilt er determines which color channels to draw. Default values are {255, 255, 255, 255, 255} for

RGBWA. For more information, please see below.

In order to draw the whole matrix it is possible to call:

color matrix[][];
DrawPixelArea(matrix);

Summary: Draw Pixe lArea can access the background matrix that was created with GetPixe lArea.

With Draw Pixe lArea you can render the complete field or only parts of it onto your virtual matrix.

The field can be drawn at the default or an individual position.

(For the drawing operation, it is assumed that the field describes a rectangular area in which

every single line has the same number of columns.)

Using Filters For Drawing

The filter can be used to leave different color channels of the matrix unchanged. The following

example draws just the red and the alpha channel onto the matrix and leaves other channels

unchanged:

color matrix[][];
color filter = {255, 0, 0, 0, 255};
DrawPixelArea(matrix, 0, 0, -1, -1, 0, 0, filter);

MADRIX 2 Script Help and Manual100

© 2014 inoage GmbH

Examples

DrawPixelArea (Without Color Filter)

The first example for the MAS Script Effect will simply draw a small, red square in the upper left

corner of the matrix with a green center. The colors drawn are defined in the field variable m at r ix

[][] in InitEffec t.

@scriptname="";
@author="";
@version="";
@description="";

color matrix[][];

void InitEffect()
{
 matrix[0][0]=RED;
 matrix[0][1]=RED;
 matrix[0][2]=RED;
 matrix[0][3]=RED;
 matrix[1][0]=RED;
 matrix[1][1]=GREEN;
 matrix[1][2]=GREEN;
 matrix[1][3]=RED;
 matrix[2][0]=RED;
 matrix[2][1]=GREEN;
 matrix[2][2]=GREEN;
 matrix[2][3]=RED;
 matrix[3][0]=RED;
 matrix[3][1]=RED;
 matrix[3][2]=RED;
 matrix[3][3]=RED;
}

void RenderEffect()
{
 DrawPixelArea(matrix, 0, 0, -1, -1, 0, 0);
}

DrawPixelArea (With Color Filter)

The second example for the MAS Script Effect uses a color filter. You will see that it filters the red

color channel. As a result, the green center will remain, while the red square will not be displayed

anymore.

@scriptname="";
@author="";

MADRIX Script (Introduction) 101

© 2014 inoage GmbH

@version="";
@description="";

color matrix[][];
color filter = {0, 255, 255, 255};

void InitEffect()
{
 matrix[0][0]=RED;
 matrix[0][1]=RED;
 matrix[0][2]=RED;
 matrix[0][3]=RED;
 matrix[1][0]=RED;
 matrix[1][1]=GREEN;
 matrix[1][2]=GREEN;
 matrix[1][3]=RED;
 matrix[2][0]=RED;
 matrix[2][1]=GREEN;
 matrix[2][2]=GREEN;
 matrix[2][3]=RED;
 matrix[3][0]=RED;
 matrix[3][1]=RED;
 matrix[3][2]=RED;
 matrix[3][3]=RED;
}

void RenderEffect()
{
 DrawPixelArea(matrix, 0, 0, -1, -1, 0, 0, filter);
}

2.4.1.7 'PixelTranspose'

Introduction

Pixe lT ranspose is a technic to transpose (move) pixels from their origin/source (srcX and srcY

coordinate) to a new destination. Three steps are necessary to perform a pixel transposition.

1. Creating the pixel transpose table which holds the information for each pixel that shall be

moved.

2. Setting or adding the information (source and destination coordinates) for each of those pixels

to the table.

3. Executing the pixel transposition.

MADRIX 2 Script Help and Manual102

© 2014 inoage GmbH

1. Creating The Pixel Transpose Table:

void CreatePixelTransposeTable(int size, int growsize)

The parameter size describes the amount of pixels in the table. The second parameter grow size

describes the size that will be used to grow the table by using AddPixe lT ransposeEnt ry if the

predefined size of Pixe lT ransposeT able is reached. It is not necessary to use the second

parameter because by default the grow size is set to 128.

2. Setting Or Adding Information

void SetPixelTransposeEntry(int idx, int srcX, int srcY, int destX, int destY)

Using SetPixe lT ransposeEnt ry requires 5 parameters. The first parameter idx defines the index of

the predefined table. This index starts counting with zero and has to be lower than the size value

of CreatePixe lT ransposeT able(int s ize, int grow size).The second and third parameter, src X and

src Y, describe the source coordinate and the fourth and fifth parameter, destX and destY, set the

destination coordinates of the pixel.

void AddPixelTransposeEntry(int srcX, int srcY, int destX, int destY)

Using AddPixe lT ransposeEnt ry requires only 4 parameters, i.e. the source and destination

coordinates. The function validates if an entry already exists. If this is not the case, the function

adds the entry to the end of the pixel transpose table. If the predefined size in

CreatePixe lT ransposeT able(int s ize, int grow size) is then exceeded, the table automatically grows

by the size defined with grow size.

The execution of SetPixe lT ransposeEnt ry is performed much faster than that of

AddPixe lT ransposeEnt ry.

MADRIX Script (Introduction) 103

© 2014 inoage GmbH

3. Executing The Pixel Transposition

void ExecutePixelTranspose(int clear)

Using this function executes all pixel transpositions that are defined in the pixel transpose table.

The c lear parameter defines how the part of the matrix is handled which is not defined as

destination. If the c lear parameter is set to CLEAR, the part will be erased using black. Otherwise,

if this parameter is set to NOCLEAR, the color values will be left like they were before.

4. Releasing The Pixel Transpose Table

void ReleasePixelTransposeTable()

Using this function releases the created transpose table. That means, that the reserved memory is

set free.

Examples

The following three examples will rotate the Main Output using the pixel transpose technique.

Please note that this only works on quadratic matrices. Just use the SCE Color Ramp effect on

Preview A and insert the following source code into the Main Output Macro. The difference will be

easily visible.

Clockwise Rotation

This macro rotates the output 90° clockwise.

@scriptname="Output Rotation";
@author="jky";
@version="2.9";
@description="Rotates the main output";

int Init=0;

void InitEffect()

 {
 int w = GetMatrixWidth();
 int h = GetMatrixHeight();
 Init=0;

MADRIX 2 Script Help and Manual104

© 2014 inoage GmbH

 if(w==h) //this example runs only on quadratic matrices

 {
 int idx = 0;
 CreatePixelTransposeTable(w*h); //make a table with w*h entities

 for(int y=0;y<h;y++)
 {
 for(int x=0;x<w;x++)

 {
 SetPixelTransposeEntry(idx,x,y,h-y-1,x); //rotate clockwise
 idx++;
 }
 }

 Init=1; //init ready, can use ExecutePixelTranspose()

 }

 else
 {
 WriteText("This script runs only on quadratic matrices,");
 WriteText("but your matrix is "+(string)w+"x"+(string)h);
 }

 }

void PreRenderEffect()
{
}

void PostRenderEffect()
{
if(Init==1)
ExecutePixelTranspose(CLEAR); //execute to transpose all pixels
 //and to clear all non-transposed pixels
}

void MatrixSizeChanged()
{
ReleasePixelTransposeTable(); //release the old transpose table if existent
InitEffect();
}

Counter-Clockwise Rotation

This macro rotates the output by 90° counter-clockwise.

@scriptname="Output Rotation";
@author="jky";
@version="2.9";
@description="Rotates the main output";

MADRIX Script (Introduction) 105

© 2014 inoage GmbH

int Init=0;

void InitEffect()

 {
 int w = GetMatrixWidth();
 int h = GetMatrixHeight();
 Init=0;

 if(w==h) //this example runs only on quadratic matrices

 {
 int idx = 0;
 CreatePixelTransposeTable(w*h); //make a table with w*h entities

 for(int y=0;y<h;y++)
 {
 for(int x=0;x<w;x++)

 {
 SetPixelTransposeEntry(idx,x,y,y,w-x-1); //rotate counter-clockwise
 idx++;
 }
 }

 Init=1; //init ready, can use ExecutePixelTranspose()

 }

 else
 {
 WriteText("This script runs only on quadratic matrices,");
 WriteText("but your matrix is "+(string)w+"x"+(string)h);
 }

 }

void PreRenderEffect()
{
}

void PostRenderEffect()
{
if(Init==1)
ExecutePixelTranspose(CLEAR); //execute to transpose all pixels
 //and to clear all non-transposed pixels
}

void MatrixSizeChanged()
{
ReleasePixelTransposeTable(); //release the old transpose table if existent
InitEffect();
}

MADRIX 2 Script Help and Manual106

© 2014 inoage GmbH

Mirror Diagonally

Use a SCE Color Ramp from bottom left to top right for example to see the result.

@scriptname="Output Rotation";
@author="jky";
@version="2.9";
@description="Rotates the main output";

int Init=0;

void InitEffect()

 {
 int w = GetMatrixWidth();
 int h = GetMatrixHeight();
 Init=0;

 if(w==h) //this example runs only on quadratic matrices

 {
 int idx = 0;
 CreatePixelTransposeTable(w*h); //make a table with w*h entities

 for(int y=0;y<h;y++)
 {
 for(int x=0;x<w;x++)

 {
 SetPixelTransposeEntry(idx,x,y,y,x); //mirror diagonally
 idx++;
 }
 }

 Init=1; //init ready, can use ExecutePixelTranspose()

 }

 else
 {
 WriteText("This script runs only on quadratic matrices,");
 WriteText("but your matrix is "+(string)w+"x"+(string)h);
 }

 }

void PreRenderEffect()
{
}

void PostRenderEffect()
{
if(Init==1)
ExecutePixelTranspose(CLEAR); //execute to transpose all pixels
 //and to clear all non-transposed pixels

MADRIX Script (Introduction) 107

© 2014 inoage GmbH

}

void MatrixSizeChanged()
{
ReleasePixelTransposeTable(); //release the old transpose table if existent
InitEffect();
}

2.4.1.8 'SetPixel'

Functionality

SetPixel functions offer the possibility to change the color of pixels. You can either specify a

certain color or use greyscale.

Examples

SetPixel

To test this script, please use the MAS Script effect.

@scriptname="SetPixel test, use with MAS script effect";
@author="";
@version="";
@description="";

color col;
int maxX,maxY,x,y;
void InitEffect()

 {
 maxX=GetMatrixWidth();
 maxY=GetMatrixHeight();
 }

 void RenderEffect()
 {
 col.r=random(0,255);
 x=random(0,maxX-1);
 y=random(0,maxY-1);
 SetPixel(col,x,y);
 }

 void MatrixSizeChanged()
 {
 InitEffect();
 }

MADRIX 2 Script Help and Manual108

© 2014 inoage GmbH

SetPixel - Filling The Matrix

To test this script, please use the MAS Script effect.

This sample fills every pixel of every row of the matrix with the color white from left to right until

the complete matrix is covered. Every second iteration black is used instead of white.

@scriptname="SetPixelSample";
@author="jky";
@version="MADRIX 2.13";
@description="a simple setpixel example to fill the matrix";

int x,y,c;
color col;

void InitEffect()
{
 x=0;
 y=0;
 c=0;
 col=WHITE;

}

void RenderEffect()
{
 SetPixel(col,x,y);
 x++;
 if(x>=GetMatrixWidth())
 {

x=0;
y++;
if(y>=GetMatrixHeight())
{

y=0;
c++;
if(c%2==0)

col=WHITE;
else

col=BLACK;
}

 }
}

void MatrixSizeChanged()
{
InitEffect();

}

MADRIX Script (Introduction) 109

© 2014 inoage GmbH

SetPixelGreyscale (MAS Script)

To test this script, please use the MAS Script effect.

@scriptname="sample of greyscale for a single pixel";
@author="";
@version="";
@description="";

 int X,Y;
 void InitEffect()
 {
 X=GetMatrixHeight();
 Y=GetMatrixWidth();
 Clear(BLUE);
 }

 void RenderEffect()
 {
 for(int i=0;i<X && i<Y;i++)
 {
 SetPixelGreyscale(i,i); // line from top left to bottom right
 SetPixelGreyscale(X-i-1,i); // line from top right to bottom left
 }
 // to render the complete matrix in greyscale, the greyscale() command
 // offers higher performance:
 // Greyscale();
 }

 void MatrixSizeChanged()
 {
 InitEffect();
 }

SetPixelGreyscale (Macro)

To test this script, you can use the Main Output Macro. But first, please select for example the

SCE ColorScroll effect in Storage A or B and display the effect on the output.

@scriptname="sample of greyscale for single pixel";
@author="";
@version="";
@description="";

 int X,Y;
 void InitEffect()
 {
 X=GetMatrixWidth();
 Y=GetMatrixHeight();
 }

 void PreRenderEffect()
 {

MADRIX 2 Script Help and Manual110

© 2014 inoage GmbH

 }

 void PostRenderEffect()
 {
 if(X>Y)// width larger than height
 {
 for(int i=0;i<Y;i++)
 {
 SetPixelGreyscale(i,i); // line from top left to bottom right
 SetPixelGreyscale(i,Y-i-1); // line from top right to bottom left
 }
 }
 else // height larger than width
 {
 for(int i=0;i<X;i++)
 {
 SetPixelGreyscale(i,i); // line from top left to bottom right
 SetPixelGreyscale(X-i-1,i); // line from top right to bottom left
 }
 }
 // to render the complete matrix in greyscale, the Greyscale() command
 // offers higher performance

 // Greyscale();
 }

2.4.2 Manipulating Effects

With MADRIX Script it is possible to render live effects. Moreover, you can manipulate the effect

settings. Those include the mapping area, the mix mode, the frame fade, and the submaster. This

chapter describes several more complex settings which can be adjusted for an effect.

There are also functions available that are unique to single effects and therefore they can only be

used with them. Examples include settings of directions or the text of the SCE Ticker effect.

MADRIX Script (Introduction) 111

© 2014 inoage GmbH

2.4.2.1 Map An Effect

Functionality

MADRIX provides the possibility to map an effect to different areas of the matrix. Setting effect

mapping parameters is also available using additional functions.

The functions discussed in this chapter provide almost the same functionality as the Map dialog

used for effects in MADRIX. Therefore, the functionality of mapping is thoroughly discussed in the

MADRIX manual. This manual only describes the functions provided by the scripting engine of

MADRIX to manipulate map and tile settings of an effect.

Settings

Using Absolute Values

One possibility is the function MapEffec tPixe l. You will have to set the values of this function in

pixels. It is declared as follows:

void MapEffectPixel(int x, int y, int w, int h)

x, y are the start coordinates to determine where the effect should be started on the virtual

matrix. Negative values are allowed, too. w , h describe the size of the mapped matrix. Any value

higher than 0 is valid. For example, to map the effect on 20, 10 with a size of 50 x 40 pixels, just

write the following:

MapEffectPixel(20, 10, 50, 40);

Using Relative Values

Another possibility is the function MapEffec tVec tor. It uses relative values between 0.0 and 1.0.

Hereby, 1.0 represents the full size of the matrix. The declaration is the following:

void MapEffectVector(float x, float y, float w, float h)

x, y are the start coordinates to determine where the effect should be started on the virtual

matrix. You can also use negative values. w , h describe the size of the mapped matrix. Here is an

example: To map the effect using half the matrix size, centered, call the function as follows:

MADRIX 2 Script Help and Manual112

© 2014 inoage GmbH

MapEffectVector(0.25, 0.25, 0.5, 0.5);

The following example uses negative start values. With negative coordinates the mapped matrix

starts outside of the virtual matrix and has a height and width of 100% of the virtual matrix.

MapEffectVector(-0.5, -0.5, 1.0, 1.0);

Another possibility is to set the size of the mapped matrix to a larger size than the virtual matrix

has. For that, you will have to use values greater than 1 for width and height. Negative values are

not allowed.

Side Effects

If the effect matrix is mapped using a mapping function and you are changing the values for the

width and height in your script, the effect will be reinitialized and restarted, beginning with a call

of the function InitEffec t. If the mapping only changes the position of the effect, the effect will

not be reinitialized and restarted.

Getting The Current Map Settings

If you want to retrieve the values for the mapping, you should use the two functions GetMapPixe l

and GetMapVec tor. They are defined like this:

int GetMapPixel(int map[])
int GetMapVector(float map[])

Both functions return fa lse if no mapping is set. And both functions return t rue if mapping is set.

The parameter m ap is a field which retrieves the mapping settings as follows:

map[0] = x
map[1] = y
map[2] = width
map[3] = height

This field can be found in the Map Effect dialog of MADRIX because it represent Pos X, Pos Y, sixe

x, and Size Y in the section "Map (Position/Size)".

MADRIX Script (Introduction) 113

© 2014 inoage GmbH

x, y describe the start coordinates and w idth, he ight describe the size of the mapped matrix. If

fa lse is returned, mapping is not activated and the standard values for x, y, w idth, and height

(0.0, 0.0, 1.0, 1.0) are activate. Here is an example to show this. Just paste the source code into

the MAS Script effect, use the map dialog and the Script Output window will display the

information.

@scriptname="";
@author="";
@version="";
@description="";

void InitEffect()
{
}

void RenderEffect()
{
float map[];
int result=GetMapVector(map);
if(result==0)

WriteText("mapping not used");
else
 WriteText("mapping is used, map x: "+ (string)map[0]+", map y:

 "+(string)map[1] +", map width: "+(string)map[2]+", map height: "+(string)map[3]);
}

Ask If Mapping Is Activated

The function int IsMapped() returns t rue if mapping is active, or fa lse if it is deactivated. Those

are also the values the function GetMap returns.

Full Example

The following example fills the matrix with a random color which is changed every tenth call of the

script. Furthermore, the effect is moved inside the matrix using mapping.

persistent float g_x;
persistent float g_y;
persistent int mode;
persistent int change;
persistent color g_col;

void InitEffect()
{

MADRIX 2 Script Help and Manual114

© 2014 inoage GmbH

 //start in upper left corner
 g_x = -0.5;
 g_y = -0.5;
 change = 10;
 //fill matrix with the color used last
 DoPreRender();
}

void PreRenderEffect()
{
 /*
 ensures that after reloading (e.g. changing storage place)
 the matrix is filled with the color used last
 */
 Clear(g_col);
}

void RenderEffect()
{
 if(change++ >= 10)
 {
 color c = {random(0, 255), random(0, 255), random(0, 255),

random(0, 255), random(128 / 2, 128 * 2)};
 g_col = c;
 Clear(c);
 change = 0;
 }
 mapEffect();
}

void mapEffect()
{
 const float move = 0.01;

 switch(mode)
 {
 case 0:
 g_y += move;
 if(g_y > 0.5)
 {
 g_y = 0.5;
 mode = 1;
 }
 break;

 case 1:
 g_x += move;
 if(g_x > 0.5)
 {
 g_x = 0.5;
 mode = 2;
 }
 break;

 case 2:
 g_y -= move;

MADRIX Script (Introduction) 115

© 2014 inoage GmbH

 if(g_y < -0.5)
 {
 g_y = -0.5;
 mode = 3;
 }
 break;

 case 3:
 g_x -= move;
 if(g_x < -0.5)
 {
 g_x = -0.5;
 mode = 0;
 }
 break;
 }//switch[mode]
 MapEffectVector(g_x, g_y, 1.0, 1.0);
}

2.4.2.2 Tile An Effect

Settings

As is the case for mapping and drawing functions, for tiling functions there is a vec tor and a pixe l

version. They work with relative values/coordinates between 0 and 1 or with absolute pixel values.

The function to set tiles for an effect is called:

MapTileEffectVector(float x, float y, float w, float h)

MapTileEffectPixel(int x, int y, int w, int h)

The parameters x and y describe the start coordinates, whereas w and h describe the width and

height of the tile. Values which may lead to the fact that the tile is partial or fully outside of the

effect matrix are also possible.

MADRIX 2 Script Help and Manual116

© 2014 inoage GmbH

Side Effects

If the size of the effect matrix is changed due to a call of the function MapT ileEffec t, the script is

reinitialized and restarted with a call of InitEffec t. This does not happen if solely the position of

the effect matrix is changed.

Getting the Current Tile Settings

Via a call of one of the following functions, it is also possible to retrieve the current tile settings:

int GetMapTileEffectVector(float map[])

int GetMapTileEffectPixel(int map[])

Both functions return t rue if the effect is currently mapped and fa lse if the effect uses the whole

matrix. The parameter m ap needs to be a field, which is filled with the current tile settings as

described below:

map[0] = x
map[1] = y
map[2] = width
map[3] = height

Values x and y describe the start coordinates of the tile relative to the eventually mapped effect

matrix. The parameters w idth and height describe the width and height of the tile and therefore of

the effect's matrix.

Setting and Getting Tile Modes

Setting Modes

For tiles it is possible to set a mirror and a tile mode. This can be done using the functions

void SetMapModeMirror(int mirrorMode)

void SetMapModeTile(int tileMode)

For the parameter m irrorMode one of the MAP_MIRROR_x constants must be used. The parameter

t ileMode needs to be one of the MAP_TILE_x constants. (Those constants are describe in the List

of Global Variables and Constants).

MADRIX Script (Introduction) 117

© 2014 inoage GmbH

Retrieving Modes

There is also the pssobility to get the current settings.

int GetMapModeMirror()

int GetMapModeTile()

GetMapModeM irror returns a MAP_MIRROR_x constant, which describes the current mirror

settings. GetMapModeT ile returns a MAP_TILE_x constant, which describes the current tile

settings.

2.4.2.3 Mix Modes

Available Functions

The function SetM ixMode offers the possibility to set the mix mode of an effect. The function

GetM ixMode retrieves the mix mode currently in use. They are declared as follows:

void SetMixMode(int mode)

int GetMixMode()

For the parameter m ode one of the values described in the table below must be used. If m ode has

an invalid value, nothing will happen and a message will be displayed inside the Script output

window of the Script editor. You can find more information about mix modes and their usage in the

MADRIX manual.

MADRIX 2 Script Help and Manual118

© 2014 inoage GmbH

Available Parameters

Identifier/ Mix Mode Description

MIXMODE_NORMAL The normal mix mode.

MIXMODE_DARKEN The darken mix mode.

MIXMODE_MULTIPLY The multiply/mask mix mode.

MIXMODE_COLORBURN The color burn mix mode.

MIXMODE_LINEARBURN The linear burn mix mode.

MIXMODE_LIGHTEN The lighten mix mode.

MIXMODE_SCREEN The screen mix mode.

MIXMODE_COLORDODGE The color dodge mix mode.

MIXMODE_LINEARDODGE The linear dodge mix mode.

MIXMODE_OVERLAY The overlay mix mode.

MIXMODE_SOFTLIGHT The soft light mix mode.

MIXMODE_HARDLIGHT The hard light mix mode.

MIXMODE_VIVIDLIGHT The vivid light mix mode.

MIXMODE_LINEARLIGHT The linear light mix mode.

MIXMODE_PINLIGHT The pin light mix mode.

MIXMODE_HARDMIX The hard mix mix mode.

MIXMODE_DIFFERENCE The difference mix mode.

MIXMODE_EXCLUSION The exclusion mix mode.

MIXMODE_AND The AND mix mode.

MIXMODE_OR The OR mix mode.

MIXMODE_XOR The XOR mix mode.

MIXMODE_NAND The NAND mix mode.

MIXMODE_NOR The NOR mix mode.

MIXMODE_MASK The mask mix mode.

MADRIX Script (Introduction) 119

© 2014 inoage GmbH

2.4.3 Sound2Light & Music2Light

MADRIX can analyze music with regard to different musical parameters, like tones, bass, tonality,

etc., using Sound2Light (S2L) or Music2Light (M2L) effects. This data is also available in MADRIX

Script and may be used to create even more fantastic effects, controlled by music.

It is necessary to differentiate between music and sound data. The term "sound data" refers to

data based on the frequency of the given input signal. A common effect based on sound data is

the equalizer. The volume is also this kind of sound data.

The notion "music data" refers to the information about the music itself, known from actual music

theory. Therefore, MADRIX identifies tonality, intervals or the current tone (or chord) itself. So,

using the tone and the tonality you can say that e.g. c major or d minor are currently played.

There are numerous examples.

As is the case with M2L or S2L effects, if a script uses any functionality that needs the audio

analysis, it is automatically started in MADRIX.

2.4.3.1 Sound2Light (S2L)

Functionality

As described above, sound data refers to frequency-based data. First of all, the function

GetSoundLevel retrieves the volume of the two audio channels (stereo sound). The value returned

ranges from 0 to 255, the lowest and highest level possible, respectively.

Moreover, other available data is frequency values. They are stored in the fields

SOUND_DATA_LEFT and SOUND_DATA_RIGHT, which are both of the data type int. There are up

to 511 values and each describes the volume of a well-defined frequency.

The length-operator of the fields tells how much valid data they contain. A check may be

necessary and then just take the values that are actually available/provided to have a proper

effect. But it is secure to always assume 511 present values.

In contrast to other dynamic fields, in MADRIX Script those fields will not grow because their size

is fixed. Trying to get an invalid element, always results in 0.

MADRIX 2 Script Help and Manual120

© 2014 inoage GmbH

The First S2L Example

The following example first of all selects a color depending on the volume of the music, which is

then used as background color. Lines will be drawn onto the matrix that indicate the average

volume of each single frequency.

const color LEFT_CHANNEL = {255, 0, 0, 128};
const color RIGHT_CHANNEL= {0, 255, 0, 128};

void InitEffect()
{
}

int avgFrequ(int field[])
{
 int result;

 //to avoid division by zero later on
 if(field.length > 0)
 {
 for(int i = 0; i < field.length; i++)
 result += field[i];

 result /= field.length;
 }

 return(result);
}

void RenderEffect()
{
 int valL = GetSoundLevel(0); //left channel
 int valR = GetSoundLevel(1); //right channel
 color c = {valL, valR, (valL * valR) % 255, (valR + valL) / 2, 0};

 float iHL = (float)avgFrequ(SOUND_DATA_LEFT) / (float)MAX_FREQUENCY_VOLUME;
 float iHR = (float)avgFrequ(SOUND_DATA_RIGHT) / (float)MAX_FREQUENCY_VOLUME;

 Clear(c);
 DrawVectorLine(LEFT_CHANNEL, 0.0, iHL, 1.0, iHL);
 DrawVectorLine(LEFT_CHANNEL, iHL, 0.0, iHL, 1.0);

 DrawVectorLine(LEFT_CHANNEL, 0.0, 1.0-iHL, 1.0, 1.0-iHL);
 DrawVectorLine(LEFT_CHANNEL, 1.0-iHL, 0.0, 1.0-iHL, 1.0);

 DrawVectorLine(RIGHT_CHANNEL, 0.0, iHR, 1.0, iHR);
 DrawVectorLine(RIGHT_CHANNEL, iHR, 0.0, iHR, 1.0);

 DrawVectorLine(RIGHT_CHANNEL, 0.0, 1.0-iHR, 1.0, 1.0-iHR);
 DrawVectorLine(RIGHT_CHANNEL, 1.0-iHR, 0.0, 1.0-iHR, 1.0);
}

MADRIX Script (Introduction) 121

© 2014 inoage GmbH

Explanation:

First, several constants are declared. They are used as colors to draw lines for the right and the

left channel.

The function avgFrequ is an assistant function. It iterates through a given field of integer values

and returns the average of all given values. If the field is empty, 0 is returned.

The function RenderEffec t stores the volume of the left and the right sound channel. This is done

for performance reasons. Calling a function needs more time than using a variable which is done in

the third line. Here, a color is build up defined by the volume levels. This color is used as

background color later on.

Afterwards, for both the left and the right sound channel the average volume is calculated. In the

same step, the results are divided by the maximal possible value in order to break them down to a

value between 0.0 and 1.0. Then, the matrix is cleared with the color calculated before and at

last, horizontal and vertical lines are drawn onto the matrix. Hereby, the vector version of the

draw function is used to draw lines across the whole matrix using the level described by the

average volume level.

The Second S2L Example

Another nice effect based on the same data is done by the following RenderEffec t function. It

uses a black background and draws the lines with the calculated color.

const color LEFT_CHANNEL = {255, 0, 0, 128};
const color RIGHT_CHANNEL= {0, 255, 0, 128};

void InitEffect()
{
}

int avgFrequ(int field[])
{
 int result;

 //to avoid division by zero later on
 if(field.length > 0)
 {
 for(int i = 0; i < field.length; i++)
 result += field[i];

MADRIX 2 Script Help and Manual122

© 2014 inoage GmbH

 result /= field.length;
 }

 return(result);
}

void RenderEffect()
{
 int valL = GetSoundLevel(0);
 int valR = GetSoundLevel(1);
 color c = {valL, valR, (valL * valR) % 255, (valR + valL) / 2, 0};

 float iHL = (float)avgFrequ(SOUND_DATA_LEFT) / (float)MAX_FREQUENCY_VOLUME;
 float iHR = (float)avgFrequ(SOUND_DATA_RIGHT) / (float)MAX_FREQUENCY_VOLUME;

 Clear();

 DrawVectorLine(c, 0.0, iHL, 1.0, iHL);
 DrawVectorLine(c, iHL, 0.0, iHL, 1.0);

 DrawVectorLine(c, 0.0, 1.0-iHL, 1.0, 1.0-iHL);
 DrawVectorLine(c, 1.0-iHL, 0.0, 1.0-iHL, 1.0);

 DrawVectorLine(c, 0.0, iHR, 1.0, iHR);
 DrawVectorLine(c, iHR, 0.0, iHR, 1.0);

 DrawVectorLine(c, 0.0, 1.0-iHR, 1.0, 1.0-iHR);
 DrawVectorLine(c, 1.0-iHR, 0.0, 1.0-iHR, 1.0);
}

MADRIX Script (Introduction) 123

© 2014 inoage GmbH

2.4.3.2 Music2Light (M2L)

Introduction

Sound2Light effects are really nice, but an even more interesting feature of MADRIX is the ability

to analyze music regarding music theoretical aspects. Tonality, scale or intervals are only some

examples of the data that can be retrieved by the sound analysis. This chapter describes how to

retrieve the data provided by MADRIX. However, it does not describe any music theory.

Using Tonality Ánd Scale

Let us start with tonality and scale of a chord. The two be retrieved via the functions GetT onalit y

and GetT oneSc ale, respectively. The exemplary sample source code below uses tonality and scale

to select a color and the alpha value will be the background color. Please remember: an audio

input signal is needed.

const color g_colorTable[] = {
 {255, 0, 0, 0}, //C
 {255, 128, 128, 128}, //C#
 {0, 255, 0, 0}, //D
 {128, 255,128,128}, //D#
 {0, 0, 255,0}, //E
 {255, 255, 0, 0}, //F
 {255, 255, 128, 128}, //F#
 {255, 0, 255, 0}, //G
 {255, 128,255,128}, //G#
 {255, 128, 0, 0}, //A
 {255, 100, 100, 100}, //A#
 {255, 255, 255, 128} //H
 };
void InitEffect()
{
}

void RenderEffect()
{
 int idx=GetTonality();
 if (idx>=0 && idx<=11) ClearColor(g_colorTable[idx]);
 else ClearColor(BLACK);
 int alpha = (255 / (1 + GetToneScale()));
 ClearAlpha(alpha);
}

Explanation:

MADRIX 2 Script Help and Manual124

© 2014 inoage GmbH

The first thing is to create a color table in which each entry equals a tonality. If the tonality is

undetermined, the function GetT onalit y results in -1. Therefore, we have to check if the value is a

valid field index and eventually draw a black matrix. You could use the function IsT onalit y to check

if the tonality was set or not.

Using Notes

MADRIX is able to identify the notes played in a song. The lowest note that can be evaluated is

the C with 8.25 Hz. The highest note is an A with 14.08 kHz. There are two functions available to

get information about the identified notes. GetNoteValue retrieves the volume of the given note

and IsNote returns t rue if the given note has been detected, otherwise fa lse. There is the

function GetAllNoteValues, which fills an field with the volume of each note. Using this method for

a lot of notes is much faster then calling GetNoteValue. An overview over which index corresponds

to which note is given by the list of notes.

The next example uses played notes to fill the matrix with different colors. It uses only the values

of three frequencies of C.

void InitEffect()
{
}

void RenderEffect()
{
 float val[];
 //C with 528Hz
 val[0] = (float)GetNoteValue(72) / 127.0;
 //C with 1.056KHz
 val[1] = (float)GetNoteValue(84) / 127.0;
 //C with 2.112KHz
 val[2] = (float)GetNoteValue(96) / 127.0;

 color c;
 c.r = (int)(255.0 * val[0]);
 c.g = (int)(255.0 * val[1]);
 c.b = (int)(255.0 * val[2]);

 Clear(c);
}

Explanation:

MADRIX Script (Introduction) 125

© 2014 inoage GmbH

First, the levels of the notes are retrieved and normalized to the range of 0.0 to 1.0. Hereby, only

three C notes are used. Then, a color is initialized and the matrix is filled.

Deprecated Functions

Deprecated functions are outdated functions and should not be used anymore.

Please note: The old functions GetValue and GetAllValues still exist, but have been declared as

deprecated and should not be used anymore. They may be removed in coming versions of MADRIX

Script. Use GetNoteValue and GetAllNoteValues instead.

Using Intervals

There are similar functions to get information about the intervals indexed from 0 (small second

interval) to 10 (large seventh interval). The function IsInterval returns t rue if the specified

interval could be analyzed, otherwise fa lse. Again, the function GetAllIntervals fills an field rapidly,

each element with either t rue (interval was analyzed) or fa lse (interval was not analyzed). The

following short example clarifies the usage of GetAllIntervals:

const int middle=GetMatrixHeight()/2;
int buf[];
int xStep;

void InitEffect()
{
 GetAllIntervals(buf);
 xStep=max(GetMatrixWidth()/buf.length,1);
}

void RenderEffect()
{
 ClearAlpha(255);
 GetAllIntervals(buf);
 for (int i=0;i<buf.length;i++)
 {
 DrawPixelLine(WHITE,i*xStep,!buf[i]*middle,i*xStep,(1+!buf[i])*middle);
 }
}

MADRIX 2 Script Help and Manual126

© 2014 inoage GmbH

Explanation:

At first, in InitEffec t the buffer buf is filled once, just in order to get the buffer length. With the

buffer length, a horizontal distance xStep is calculated to separate some lines equally later on.

Using the function m ax, the distance is at least 1.

Calling RenderEffec t the buffer buf is filled with the current interval appearances. Then, a vertical

line is drawn for every interval, either from the middle to the top of the matrix (if the interval was

analyzed) or from middle to bottom (if not).

Using Other Tone Theoretical Parameters

There is lots of other data which may be used to create effects, e.g. the sound level or the note

of the currently lowest note (bass tone). The handling is similar to the functions described above.

Further details are given by the List of Functions.

Part

III

MADRIX 2 Script Help and Manual128

© 2014 inoage GmbH

3 MADRIX Script (Programming Language Overview)

3.1 Keyword Search

The following keywords are available in MADRIX Script:

break (in 'switch' statements)

break (in loops)

case

const

continue

default

else

false, FALSE

for

if

persistent

return

switch

true, TRUE

while

3.2 List Of Functions (Alphabetical Order)

Overview

In addition to the specific functions of the MAS Script effect, Macros for effects, the Main Ouput

Macro, and the Storage Place Macro (all listed below), the following table lists additional functions.

A "+" symbol indicates, in which areas of MADRIX Script the functions can be used.

Function Description MAS
Script

Macr
os for
Effec

ts

Stora
ge

Place
Macr

o

Main
Outp

ut
Macr

o

float abs(float x) Returns the absolute value of x. + + + +

void
AddPixelTransposeEntry(int
srcX, int srcY, int destX, int
destY)

Adds one entry to the pixel transpose table and resizes
the table if necessary. srcX and srcY are the x and y
coordinates of the source. destX and destY are the
destination coordinates. »Description

+ + + +

MADRIX Script (Programming Language Overview) 129

© 2014 inoage GmbH

float arccos(float a)
float arccosDeg(float a)

Returns the arc cosine of the angle a in radian
measure or degrees, respectively.

+ + + +

float arcsin(float a)
float arcsinDeg(float a)

Returns the arc sine of the angle a in radian measure
or degrees, respectively.

+ + + +

float arctan(float a)
float arctanDeg(float a)

Returns the arc tangent of the angle a in radian
measure or degrees, respectively

+ + + +

float ceil(float f) Rounds up the given value to the next integer value. E.
g. ceil(2.00001) = 3.0

+ + + +

void ChangeBrightness(color
col)

Adds the values of the specified color to the current
color of each pixel in the matrix. »Example

+ + + +

int
CheckScriptEngineVersion
(int major, int minor)

Checks the Script engine version in use and returns 1
if the version is equal or higher to the version specified
with m ajor and m inor. Or else 0 is returned. The
current Script Engine Version is 1.43. A useful function
to check if the minimum requirements of your script
are met. »Example

+ + + +

int CheckSoftwareVersion(int
major, int minor, int subminor,
int subsubminor)

Checks the MADRIX software version in use and
returns 1 if the version is equal or higher to the version
specified with m ajor, m inor, subm inor, and
subsubm inor. Or else 0 is returned. The current
MADRIX version is 2.14.8.0. You can check which
version you are using by opening the Logfile in
MADRIX (at the beginning of the file) or check the
MADRIX.exe (perform a right-click->Properties-
>Version). A useful function to check if the minimum
requirements of your script are met. »Example

+ + + +

void Clear()
void Clear(color col)

Fills the whole matrix with the given color. The default
color (no color parameter) is black.

+ + + +

void ClearAlpha(int alpha) Sets the alpha value of each pixel in the matrix to
a lpha.

+ + + +

void ClearColor(color col) Fills the whole matrix with the given color without
changing the alpha value.

+ + + +

void ColorReplace(color
oldCol, color newCol)

Replaces the given color o ldCo l with a new one (
newCo l).

+ + + +

float cos(float a)
float cosDeg(float a)

Returns the cosine of the angle a in radian measure or
degrees, respectively.

+ + + +

float cosH(float a)
float cosHDeg(float a)

Returns the hyperbolic cosine of the angle a in radian
measure or degrees, respectively.

+ + + +

void
CreatePixelTransposeTable
(int size, int growsize)

Creates the pixel transpose table with the given size
and growsize. »Description

+ + + +

float deg2rad(float a) Converts the angle a from degrees to radian measure. + + + +

void Dim(float value) Reduces the brightness of the complete virtual matrix.
Valid values for va lue range from 0.0 to 1.0.

+ + + +

void DimPixel(float value, int
x, int y)

Reduces the brightness of an individual pixel. x and y
are the coordinates of the pixel. Valid values for va lue
range from 0.0 to 1.0.

+ + + +

MADRIX 2 Script Help and Manual130

© 2014 inoage GmbH

void DimPixelArea(float value,
int x, int y, int width, int height)

Reduces the brightness of a certain area of the virtual
matrix. x and y are the coordinates of the area (upper
left corner). w idth and he ight specify the width and
height of the area. Valid values for va lue range from
0.0 to 1.0.

+ + + +

void DrawPixelArea(color
matrix[][], int xDst, int yDst, int
w, int h,
int xSrc, int ySrc, color filter)

Copies data from a 2-dimensional field of colors and
renders it to the matrix. »Description

+ + + +

void DrawPixelCircle(color
col, int x, int y, int rw, int rh)

Draws a circle at the center of a specified rectangle
with the specified color. The rectangle is defined by the
pixel coordinates (x , y) and the absolute width rw and
height rh.

+ + + +

void DrawPixelCross(color col,
int x, int y, int w, int h)

Draws a cross onto the matrix with the given width w
and height h at the given position. Position and size are
given as absolute pixel values.

+ + + +

void DrawPixelDiamond(color
col, int x, int y, int w, int h)

Draws a diamond shape starting with pixel (x , y) with
the absolute width w and height h with the specified
color.

+ + + +

void DrawPixelEllipse(color
col, int mx, int my, int w, int h)

Draws an ellipse with the absolute midpoint position (
m x ,m y) and the absolute width w and height h with the
specified color.

+ + + +

void DrawPixelLine(color col,
int x1, int y1, int x2, int y2)

Draws a line from pixel (x1, y1) to (x2, y2) with the
specified color. »Example

+ + + +

void DrawPixelRect(color col,
int x, int y, int w, int h)

Draws a rectangle from pixel (x , y) with the absolute
width w and height h with the specified color.

+ + + +

void DrawPixelStar(color col,
int x, int y, int w, int h)

Draws a star onto the matrix with the given width and
height at the given position. Position and size are given
as absolute pixel values.

+ + + +

void DrawPixelText(color c,
font f, string t, int x, int y, int
rotation)

Draws a text across the main output. co lo r c and font f
are structures. Valid values for ro ta tion are
ROTATION_TEXT_NONE, ROTATION_TEXT_90,
ROTATION_TEXT_180, ROTATION_TEXT_270. »
Example 1 »Example 2 »Example 3 »Example 4

+ + + +

void DrawVectorCircle(color
col, float x, float y, float rw,
float rh)

Draws a circle at the center of a specified rectangle
with the specified color. The rectangle is defined by the
relative position (x , y) and the relative width rw and
height rh.

+ + + +

void DrawVectorCross(color
col, float x, float y, float w, float
h)

Draws a cross onto the matrix with the given width and
height at the given position. Both, position and size are
given as relative values between 0.0 and 1.0.

+ + + +

void DrawVectorDiamond
(color col, float x, float y, float
w, float h)

Draws a diamond shape from the relative position (x ,y)
with the relative width w and height h with the specified
color.

+ + + +

void DrawVectorEllipse(color
col, float mx, float my, float w,
float h)

Draws an ellipse with the relative midpoint position (
m x ,m y) and the relative width w and height h with the
specified color.

+ + + +

void DrawVectorLine(color
col, float x1, float y1, float x2,
float y2)

Draws a line from the relative position (x1, y1) to (x2,
y2) with the specified color.

+ + + +

MADRIX Script (Programming Language Overview) 131

© 2014 inoage GmbH

void DrawVectorRect(color
col, float x, float y, float w, float
h)

Draws a rectangle from the relative position (x ,y) with
the relative width w and height h with the specified
color.

+ + + +

void DrawVectorStar(color
col, float x, float y, float w, float
h)

Draws a star onto the matrix with the given width and
height at the given position. Both, position and size are
given as relative values between 0.0 and 1.0.

+ + + +

void DrawVectorText(color c,
font f, string t, float x, float y,
int rotation)

Draws a vector text across the main output. co lo r c
and font f are structures. Valid values for ro ta tion are
ROTATION_TEXT_NONE, ROTATION_TEXT_90,
ROTATION_TEXT_180, ROTATION_TEXT_270.
Example: DrawPixelText(RED,f,"Hello",0,1,0);

+ + + +

void EnableFrameFade(int
enable)

Enables or disables frame fade for the effect. If the
value enable is set to fa lse or 0, frame fade will be
disabled. Otherwise, it will be enabled.

+ +

int endswith(string text, string
substring)

This function checks if the string tex t ends with the
given substring. If tex t ends with the specified
substring, true is returned, otherwise fa lse. »
Description

+ + + +

void ExecutePixelTranspose
(int clear)

Executes the pixel transposition by using the pixel

transpose table. Using the value CLEAR will erase/

overwrite all pixels that are not defined as destination

with the the color black. Otherwise, NOCLEAR will

keep all pixels that are not defined as original
destination. »Description

+ + + +

float exp(float x) Returns the result of e (2.7182...) to the power of x. + + + +

void FillPixelCircle(color col,
int x, int y, int rw, int rh)

Fills a circle with the specified color at the center of the
specified rectangle. The rectangle is defined by the
starting pixel (x ,y) and the absolute width rw and
height rh.

+ + + +

void FillPixelDiamond(color
col, int x, int y, int w, int h)

Fills a diamond starting from pixel (x ,y) with the
absolute width w and height h with the specified color.

+ + + +

void FillPixelEllipse(color col,
int mx, int my, int w, int h)

Fills an ellipse with the absolute midpoint position (m x ,
m y) and the absolute width w and height h with the
specified color.

+ + + +

void FillPixelRect(color col, int
x, int y, int w, int h)

Fills a rectangle starting from pixel (x ,y) with the
absolute width w and height h with the specified color.
»Example

+ + + +

void FillVectorCircle(color col,
float x, float y, float rw, float rh)

Fills a circle at the center of a specified rectangle in the
specified color. The rectangle is defined by the relative
position (x ,y) and the relative width rw and height rh.

+ + + +

void FillVectorDiamond(color
col, float x, float y, float w, float
h)

Fills a diamond starting from the relative position (x ,y)
with the relative width w and height h with the specified
color.

+ + + +

void FillVectorEllipse(color
col, float mx, float my, float w,
float h)

Fills an ellipse with the relative midpoint position (m x ,
m y) and the relative width w and height h with the
specified color.

+ + + +

void FillVectorRect(color col,
float x, float y, float w, float h)

Fills a rectangle starting from the relative position (x ,y)
with the relative width w and height h with the specified
color.

+ + + +

void Filter(int filter) Renders a filter over the matrix. »Valid parameters
(Filters) »Description

+ + + +

MADRIX 2 Script Help and Manual132

© 2014 inoage GmbH

int findstring(int startIndex,
string text, string substring)

Searches for the substring within tex t starting at
sta rtIndex. The function returns an index that
describes the position at which the substring begins. »
Description
Example: substring(0, "Hallo Welt", "Welt") returns 6. If
the substring is not found within tex t, -1 is returned.

+ + + +

float fmax(float x, float y) Returns the maximum value of the floating point
numbers x and y.

+ + + +

float fmin(float x, float y) Returns the minimum value of x and y. + + + +

float fmod(float denominator,
float divisor)

Calculates the remainder of the float division. + + + +

float frandom() Returns a random number within the the range of 0 to
1.

+ + + +

void GetAllIntervals(int buf[]) Fills the fiel buf with the occurrences of each interval
(buf[0] ... buf[10]). buf[index] is true, if the specified
interval was analyzed. »Example

+ +

void GetAllNoteValues(int buf
[])

Fills the field buf with the sound level values for each
note (buf[0] ... buf[127]). buf[index] can differ from 0
to 127.

+ +

string GetApplicationPath() Locates the MADRIX.exe on your harddisk and returns
the path as a str ing. »Example

+ + + +

int GetBassTone() Returns a value, ranging from 0 to 127, representing
the lowest tone (0 = C, 1 = C#, 2 = D, ...). The return
value is -1, if the lowest tone could not be determined.

+ +

int GetBassType() Returns a value, ranging from 0 to 11, representing the
bass type (0 = base bass, 1,2 = small/large second
bass, 3,4 = small/large third bass, ... , 10, 11 = small/
large seventh bass). The return value is -1 if the bass
type could not be determined.

+ +

int GetBassValue() Returns a value, ranging from 0 to 127, representing
the sound level of the bass tone.

+ +

int GetColorDepth() Returns the color depth of the fixture. + + + +

string GetComputerName() Retrieves the name of the computer in use as defined
in the Windows® operating system.

+ + + +

date GetDate() Returns a date structure with the current date. »
Example

+ + + +

int GetDegreeMapRotation() Returns the current rotation value in degrees. + +

void GetDmxIn(int DmxValues
[], int startchannel, int channels,
int universe)

Stores the DMX-IN status of several DMX channels in
an array (Dm xVa lues[]). To use the function, choose a
DMX start channel and specify the number of channels
that should be scanned. Valid values for sta rtchanne l
range from 0 to 511. Valid values for channe ls range
from 0 to 511. Please note that a maximum of 512
channels can be scanned. This means that the sum of
sta rtchanne l + channe ls must be less or equal to 512.
In addition, specify the universe that should be
scanned. Valid values for unive rse range from 0 to
255. The default unive rse is 0, i.e. DMX Universe 1.

+ + + +

MADRIX Script (Programming Language Overview) 133

© 2014 inoage GmbH

int GetDmxInChannel(int
channel, int universe)

Returns the status of the DMX-IN functionality of a
specified DMX channel (channe l). Valid values for
channe l range from 0 to 511. In addition, specify the
universe that should be scanned. Valid values for
unive rse range from 0 to 255. The default value of
unive rse is 0, i.e. DMX Universe 1.

+ + + +

int GetFilter() Returns which Filter Effect (FX) is applied to the matrix. + + +

float GetFrameCount() Retrieves the number of frames the effect produces
before it gets repeated. This is the same value which
was set by Se tFram eCount. The initial value is 1000.0.

+ +

float GetFrameId() Returns the ID of the current frame. »Description + +

float GetFrameSteps() Returns the number of frames which are between this
and the last call. »Description

+ +

int GetLink() Returns 1 (i.e. true) if the option to link effect layers is
enabled, otherwise 0 (false).

+ +

int GetMapModeMirror() Returns the current mirror mode. »Description + +

int GetMapModeTile() Returns the current tile mode. »Description + +

int GetMapPixel(int map[]) Retrieves the current mapping of the effect. The
coordinates and matrix dimension are returned in the
given field using absolute pixel coordinates. The
function returns true, if the effect matrix is mapped.
fa lse is returned if the effect is full-sized onto the
matrix. »Description

map[0] = x coordinate
map[1] = y coordinate
map[2] = width
map[3] = height

+ +

int GetMapTileEffectPixel(int
map[])

Retrieves the current map tile settings of the effect.
Returns true if mapping is active, otherwise fa lse. m ap
retrieves the settings as follows:

map[0] = x - start coordinate
map[1] = y - start coordinate
map[2] = w - width of the tile
map[3] = h - height of the tile

»Description

+ +

int GetMapTileEffectVector
(float map[])

Retrieves the current map tile settings of the effect.
Returns true if mapping is active, otherwise fa lse. map
retrieves the settings as followed:

map[0] = x - start coordinate
map[1] = y - start coordinate
map[2] = w - width of the tile
map[3] = h - height of the tile

»Description

+ +

int GetMapVector(float map[]) Retrieves the current mapping of the effect. The
coordinates and matrix dimension are returned in the
given field using relative values between 0.0 and 1.0.
But negative values are also possible. The function
returns true, if the effect matrix is mapped. fa lse is
returned if the effect is full-sized onto the matrix. »
Description

map[0] = x-coordiante
map[1] = y-coordiante
map[2] = width
map[3] = height

+ +

MADRIX 2 Script Help and Manual134

© 2014 inoage GmbH

int GetMatrixHeight() Returns the vertical pixel count of the matrix. + + + +

int GetMatrixWidth() Returns the horizontal pixel count of the matrix. + + + +

void GetMidiInControl(int
midivalues[], int startcontrol, int
controlcount, int midichannel, int
device)

Stores the MIDI values for multiple controls in an array
(m idiva lues[]). To use the function, choose a start
control (sta rtcontro l) and the number of controls (
contro lcount), as well as the MIDI channel (m idichanne l
) and the dev ice. The default value of sta rtnote,
m id ichanne l, and dev ice is 0, i.e. the first control,
channel, and device. The default and maximum value
of contro lcount is 128. (Please note: In MADRIX, the
index for channels and devices starts with 1, while the
index for MIDI notes starts with 0). »Example

+ + + +

int GetMidiInControlValue(int
midicontrol, int midichannel, int
device)

Returns the MIDI control value of the specified MIDI
contro l change (m id icontro l) and m idichanne l for the
specified dev ice. The default value of contro l,
m id ichanne l, and dev ice is 0, i.e. the first control,
channel, and device. (Please note: In MADRIX, the
index for channels and devices starts with 1, while the
index for MIDI notes starts with 0). »Example

+ + + +

void GetMidiInNote(int
midivalues[], int startnote, int
notecount, int midichannel, int
device)

Stores the MIDI values for multiple notes in an array (
m idiva lues[]). To use the function, choose a start note
(sta rtnote) and the number of notes (notecount), as
well as the MIDI channel (m idichanne l) and the dev ice.
The default value of sta rtnote, m id ichanne l, and dev ice
is 0, i.e. the first control, channel, and device. The
default and maximum value of notecount is 128.
(Please note: In MADRIX, the index for channels and
devices starts with 1, while the index for MIDI notes
starts with 0). »Example

+ + + +

int GetMidiInNoteValue(int
midinote, int midichannel, int
device)

Returns the MIDI note value of the specified MIDI note
(m idinote) and m idichanne l for the specified dev ice.
The default value of note, m id ichanne l, and dev ice is 0,
i.e. the first note, channel, and device. (Please note: In
MADRIX, the index for channels and devices starts with
1, while the index for MIDI notes starts with 0). »
Example

+ + + +

int GetMixMode() Returns the currently set mix mode. »Valid
parameters (Mix modes) »Description

+ +

int GetNoteValue(int note) Returns a value, ranging from 0 to 127, representing
the sound level of the specified note: 0 = C = 8.25
Hz, ..., 127 = G = 12.67 kHz. »Example

+ +

int GetOpacity() Returns the currently set opacity value of the effect.
The value ranges from 0 to 255.

+ +

color GetPixel(int x, int y) Returns the color of the pixel at position (x ,y). + + + +

void GetPixelArea(color
matrix[][], int xSrc, int ySrc, int
w, int h,
int xDst, int yDst)

Retrieves data from the matrix and stores it into a 2-
dimensional field of colors. »Description

+ + + +

string
GetScriptEngineVersion()

Returns the script engine version and returns the value
as a str ing. »Example

+ + + +

string GetSoftwareVersion() Returns the MADRIX software version and returns the
value as a str ing. »Example

+ + + +

MADRIX Script (Programming Language Overview) 135

© 2014 inoage GmbH

int GetSoundLevel(int
channel)

Returns a value, ranging from 0 to 255, representing
the sound level of the stereo channel: 0 = left channel,
1 = right channel. »Example

+ +

int GetSubMaster() Returns the currently set submaster value of the effect.
The value ranges from 0 to 255.

+ +

time GetTime() Returns a time structure with the current time. »
Example

+ + + +

time GetTimeCode() Returns a time structure with the currently used Time
Code. »Example

+ + + +

int GetTonality() Returns a value, ranging from 0 to 11, representing the
tonality (0 = C, 1 = C#, 2 = D ...). The return value is
-1, if the tonality could not be determined. »Example

+ +

int GetToneScale() Returns a value, ranging from 0 to 2, representing the
tone scale (0 = undetermined, 1 = major, 2 = minor).
»Example

+ +

string GetUserName() Retrieves the name of the current user as defined in
the Windows® operating system.

+ + + +

string
GetUserProfileDirectory()

Locates the directory of the current user profile on the
harddisk and returns the path as a str ing. »Example

+ + + +

float GetVectorMapRotation() Returns the current rotation value. + +

color GetVectorPixel(float x,
float y)

Returns the co lo r of the pixel drawn at vector
coordinates x and y.

+ + + +

void Greyscale() Converts the whole matrix to grey scaled values. + + + +

float hypot(float x, float y) Calculates the length of the hypotenuse of an
orthogonal triangle with x and y as the cathetus'
lengths.

+ + + +

void InvertColor() Inverts the color of the entire matrix. + + + +

void InvertMatrix() Inverts the whole matrix. The top left pixel will be
moved to the bottom right and the bottom left pixel to
the top right.

+ + + +

int isalnum(string text) Returns true if the given string tex t contains only
characters and figures and if its length is greater then
0. Otherwise, fa lse is returned. »Description

+ + + +

int isalpha(string text) Returns true if the given string contains only characters
and if its length is greater than 0. Otherwise, fa lse is
returned. »Description

+ + + +

int IsDmxInEnabled() Retrieves if DMX-IN is activated (1) or not (0). + + + +

int IsFrameFadeEnabled() Returns true if frame fade is currently enabled, or fa lse
if not.

+ +

int IsInterval(int index) Returns true if the specified interval (at the index
position, ranging from 0 to 10) was analyzed.

+ +

int IsMapped() Returns true if the current effect is mapped, otherwise
fa lse.

+ +

int IsMapRotation() Returns the status of the map rotation. 0 means the
rotation value is absolute (no animation) and 1 means
the rotation value is relative (animation).

+ +

int IsMidiInEnabled() Retrieves if MIDI-IN is activated (1) or not (0). + + + +

MADRIX 2 Script Help and Manual136

© 2014 inoage GmbH

int IsNote(int note) Returns true if the specified note was analyzed. (0 = C
= 8.25 Hz, ..., 127 = G = 12.67 kHz)

+ +

int isnum(string text) Returns true if the given tex t represents a number.
This may be an integer value or a floating point
number, like 1.3. Otherwise it returns fa lse. »
Description

+ + + +

int IsTonality() Returns true if the tonality could be determined. + +

float ln(float x) Returns the result of the natural logarithm of x. + + + +

float log10(float x) Returns the result of the common logarithm of x. + + + +

void MapEffectPixel(int x, int
y, int w, int h)

Sets the mapping coordinates for the current effect.
Using this method the effect may be mapped to
different positions of the matrix. x and y are the start
coordinates using absolute pixel values. Negative
values are also possible in order to move the effect
matrix beyond the real matrix. w and h are the new
width and height of the mapped matrix. »Description
Please note: If the size of the virtual effect matrix is
changed by this function, the effect will be restarted
and InitEffe ct is called.

+ +

void MapEffectVector(float x,
float y, float w, float h)

Sets the mapping coordinates for the current effect.
Using this method the effect may be mapped to
different positions of the matrix. x and y are the start
coordinates using relative values between 0.0 and 1.0.
Negative values are also possible. w and h are the new
width and height of the mapped matrix. »Description
Please note: If the size of the virtual effect matrix is
changed by this function, the effect will be restarted
and InitEffe ct is called.

+ +

void MapTileEffectPixel(int x,
int y, int w, int h)

Sets the tile coordinates for the current effect using
absolute values. x and y are the start coordinates of
the tile. w and h are the width and the height.

+ +

void MapTileEffectVector
(float x, float y, float w, float h)

Sets the tile coordinates for the current effect using
relative values. x and y are the start coordinates of the
tile. w and h are the width and the height.

+ +

int max(int x, int y) Returns the maximum value of the integer numbers x
and y.

+ + + +

int min(int x, int y) Returns the minimum value of x and y. + + + +

void PixelFloodFill(color col,
int x, int y)

Fills an single-colored area with the specified color co l,
starting at the given position x and y.

+ + + +

float pow(float x, float y) Returns the result of the calculation of x to the power
of y.

+ + + +

float rad2deg(float a) Converts the angle a from radian measure to degrees. + + + +

int random(int min, int max) Returns a random integer number in the value range
of m in to m ax.

+ + + +

int ReadAsync(string file,
string txt)

Reads content as text from a file into the string tx t. »
Description & Examples

+ + + +

void replace(string src, string
old, string new)

Replaces any appearances of o ld within src with new. »
Description

+ + + +

MADRIX Script (Programming Language Overview) 137

© 2014 inoage GmbH

int rfindstring(int startIndex,
string text, string substring)

This function looks for the substring in the given tex t
from its ending to the beginning. The search starts at
the given sta rtIndex, while the last charachter has the
index 0. The function returns the index where the
substring occurs for the first time after the specified
sta rtIndex. If the substring was not found, -1 is
returned. »Description

+ + + +

float round(float f) Rounds the given value to its next integer value. The
value is rounded correctly, either up or down.

+ + + +

void SetDegreeMapRotation
(int degree, int anim)

Sets the rotation value and animation status of the
effect using absolute values. degree describes the
degrees/angle. Valid values range from -720 to 720.

Valid values for anim are MAP_ANIM_OFF und

MAP_ANIM_ON.

+ +

void SetFilter(int filter) Applies a Filter Effect (FX) to the matrix. Valid values
for filte r are »Filters »Description

+ + +

void SetFrameId(float id) Sets a new frame ID. If the given id is lower than 0, it
is set to 0. »Description

+ +

void SetInvalid() Use this function to set an already rendered frame/
effect as invalid. This means that the frame will be re-
rendered, which is the normal case. This can be useful
with dynamic effects since the content of the effect
does change all the time. Re-rendering is the normal
case as effects and output data are rendered with
several frames per second (FPS). See also »SetValid

+ +

void SetLink(int enable) Enables or disables the option to link effect layers.
Valid values range are 0 (false) or 1 (true).

+ +

void SetMapModeMirror
(mirrorMode)

Sets the mirror mode for effect tiling. For m irrorMode
one of the MAP_MIRROR_ values must be used. »
Description

+ +

void SetMapModeTile
(tileMode)

Sets the tile mode for effect tiling. For tileMode one of
the MAP_TILE_ values must be used. »Description

+ +

void SetMixMode(int mode) Sets the mix mode of the effect. m ode may be one of
the values defined in Mix modes. If m ode is invalid,
nothing happens and a message is displayed in the
Script output of the Script Editor. »Description

+ +

void SetOpacity(int value) Sets the opacity value of the effect. Valid values range
from 0 to 255.

+ +

void SetPixel(color col, int x,
int y)

Sets the pixel at position (x ,y) to the specified color. »
Description & Examples

+ + + +

void SetPixelGreyscale(int x,
int y)

Renders the selected pixel at position (x ,y) in
greyscale. »Description

+ + + +

void SetPixelTransposeEntry
(int idx, int srcX, int srcY, int
destX, int destY)

Adds one pixel transpose table entry defined by idx.
srcX and srcY are the x and y coordinates of the
source. destX and destY are the destination
coordinates. »Description

+ + + +

int SetReadAsyncInterval
(string file, int interval)

Sets the reading inte rva l for a certain file. To be used
in combination with ReadAsync. »Description &
Examples

+ + + +

void SetSubMaster(int value) Sets the submaster value of the effect. Valid values
range from 0 to 255.

+ +

MADRIX 2 Script Help and Manual138

© 2014 inoage GmbH

void SetValid() Use this function to set an already rendered frame/
effect as valid. This means that the frame will not be
re-rendered. This can be useful with static effects since
the content of the effect does not change over time.
Re-rendering would be the normal case as effects and
output data are rendered with several frames per
second (FPS). See also »SetInvalid

+ +

void SetVectorMapRotation
(float value, int anim)

Sets the rotation value and animation status of the
effect using relative values. degree describes the
degrees/angle. Valid values range from -200.0 to

200.0. Valid values for anim are MAP_ANIM_OFF
und MAP_ANIM_ON.

+ +

void SetVectorPixel(color,
float x, float y)

Draws one pixel at the given variable vector
coordinates. In addition to the coordinates, a co lo r
must be specified.

+ + + +

void ShiftPixelMatrix(int x, int
y, int w, int h, int dir, int step)

Moves the area of the matrix (defined by x, y, w, and h
) step pixel into the given direction. Exemplary values

for d ir are SHIFT_UP, SHIFT_DOWN, or

SHIFT_UL. »List of Global Constants.

Please note that after shifting the pixels, the data is
lost. It is not possible to undo a shifting operation. x , y ,
w, h describe the rectangle that should be shifted. x
and y describe the upper left corner. w and h are the
width and height of the rectangle. The chapter about
the function provides more details.

+ + + +

void ShiftVectorMatrix(float x,
float y, float w, float h, int dir,
float step)

Moves the area of the matrix (defined by x, y, w, and h
) step pixel into the given direction. Exemplary values

for d ir are SHIFT_UP, SHIFT_DOWN, or

SHIFT_UL. »List of Global Constants.

Please note that after shifting the pixels, the data is
lost. It is not possible to undo a shifting operation. x , y ,
w, h describe the rectangle that should be shifted. x
and y describe the upper left corner. w and h are the
width and height of the rectangle. The chapter about
the function provides more details.

+ + + +

float sin(float a)
float sinDeg(float a)

Returns the sine of the angle a in radian measure or
degrees, respectively.

+ + + +

float sinH(float a)
float sinHDeg(float a)

Returns the hyperbolic sine of the angle a in radian
measure or degrees, respectively.

+ + + +

float sqrt(float x) Returns the square root of x. + + + +

int startswith(string text, string
substring)

This function checks if the tex t string starts with the
given substring. If tex t starts with substring,true is
returned. Otherwise fa lse is returned. »Description

+ + + +

int strcmp(string str1, string
str2)

Compares the two given strings each other. If they are
equal, 0 is returned. A value of -1 is returned if str1 is
less than str2. A value of 1 is returned if str1 is greater
than str2. »Description

+ + + +

void strip(string text) Removes leading and ending white spaces, such as
space, tabulator, line feeds, etc., from the given string
tex t. »Description

+ + + +

string substring(string text, int
start, int count)

Extracts a certain number of characters (count)
beginning with sta rt from the given tex t. »Description
Example: substring("Hello", 0, 2) returns "He".

+ + + +

MADRIX Script (Programming Language Overview) 139

© 2014 inoage GmbH

float tan(float a)
float tanDeg(float a)

Returns the tangent of the angle a in radian measure
or degrees, respectively.

+ + + +

float tanH(float a)
float tanHDeg(float a)

Returns the hyperbolic tangent of the angle a in radian
measure or degrees, respectively.

+ + + +

void tokenize(string src, string
delimiter, string reslist[])

Strips the string src into smaller pieces delimited by
characters within de lem ite r. The result is returned in
reslist. »Description

+ + + +

void tolower(string text) Converts each character of the given string tex t into a
lowercase character. »Description

+ + + +

void toupper(string text) Converts each character of the given string tex t into a
uppercase characters. »Description

+ + + +

void TRACE(variable) Writes the value of the specified variable into the Script
output window. Fulfills the same function as WriteText.

+ + + +

float trunc(float f) Truncates/cuts off the decimals from a floating point
value.

+ + + +

void VectorFloodFill(color col,
float x, float y)

Fills an single-colored area with the given color co l,
starting at the given position x and y. In contrast to
P ixe lFloodFill, the coordinates are given as floating
point values ranging from 0.0 to 1.0.

+ + + +

void WriteText(string s) Writes the specified message into the Script output
window. »Example

+ + + +

Deprecated Functions

Deprecated functions are outdated functions and should not be used anymore.

Function Description

void GetAllValues(int buf[]) Fills the field buf with the sound level values for each note (buf
[0] ... buf[127]). buf[index] can differ from 0 to 127.
Please note: This function is depracated. Use GetAllNoteValues
instead.

int GetValue(int note) Returns a value, ranging from 0 to 127, representing the sound
level of the specified note: 0 = C = 8.25 Hz, ..., 127 = G = 12.67
kHz.
Please note: This function is depracated. Use GetNoteValue
instead.

int GetSubmasterValue() Returns the currently set submaster value of the effect. The value
ranges from 0 to 255.
Please note: This function is depracated. Use GetSubMaster
instead.

void SetSubmasterValue(int value) Sets the submaster value of the effect. Valid values range from 0
to 255.
Please note: This function is depracated. Use SetSubMaster
instead.

MADRIX 2 Script Help and Manual140

© 2014 inoage GmbH

Specific Functions

Macro Functions Only Available For The MAS Script Effect

You can find a detailed description in the chapter MAS Script Effect: Functions.

Here is an overview:

o DoPreRender

o GetBpm

o GetFrameCount

o GetFrameId

o GetFrameSteps

o SetBpm

o SetFixedFrameRate

o SetFrameCount

o SetFrameId

o SetUseFloatFrames

Functions Only Available For Macros For Effects

The standard functions of the MAS Script effect are also available for effect macros. Effects in

MADRIX are grouped into three categories: SCE - Static Color effects, S2L - Sound2Light effects,

and M2L - Music2Light effects.

For better readability, we have only listed the various effects. You can find more information in

the chapter Macros for Effects: Functions or in the sub-chapters:

SCE - Static Color Effects

SCE Color

SCE Bitmap

SCE Bounce

SCE Color Change

SCE Color Fill

SCE Color Ramp

SCE Color Scroll

S2L - Sound2Light Effects

S2L Equalizer

S2L EQ Drops

S2L EQ Shapes

S2L EQ Tubes

S2L Frequency Flash

S2L Level Color

S2L Level Meter

M2L - Music2Light Effects

M2L Color Fade

M2L Color Rings

M2L Color Scroll

M2L Interval Drops

M2L Interval Tubes

M2L Single Tone Shapes

MADRIX Script (Programming Language Overview) 141

© 2014 inoage GmbH

SCE Drops

SCE Explosions

SCE Fire

SCE Metaballs

SCE Plasma

SCE Pulse / Stroboscope

SCE Radial

SCE Shapes

SCE Starfield

SCE Ticker

SCE Video

SCE Wave

S2L Level Ring

S2L Waveform

S2L Wavegraph

Functions Only Available For The Main Output Macro

You can find a detailed description in the chapter Main Output Macro: Functions.

Here is an overview:

o CuelistBack

o CuelistCurrentCue

o CuelistGo

o CuelistGoto

o CuelistPlay

o CuelistStop

o Filter

o GetAudioFader

o GetFadeColor

o GetFadeTime

o GetFadeType

o GetFadeValue

o GetFilterColor

o GetFreeze

o GetMasterFader

o GetStorageFullState

o GetStoragePause

o GetStoragePlace

MADRIX 2 Script Help and Manual142

© 2014 inoage GmbH

o GetStorageSpeedMaster

o GetStorageSubMaster

o SetAudioFader

o SetFadeColor

o SetFadeTime

o SetFadeType

o SetFadeValue

o SetFilterColor

o SetFreeze

o SetMasterFader

o SetStoragePause

o SetStoragePlace

o SetStorageSpeedMaster

o SetStorageSubMaster

o SetStorageFilter

o GetStorageFilter

o ImportStoragePlace

o ImportStorage

o ImportPatch

Functions Only Available For The Storage Place Macro

You can find a detailed description in the chapter Storage Place Macro: Functions.

Here is an overview:

o EnableLayerFrameFade

o GetDescription

o GetLayerBlind

o GetLayerCount

o GetLayerDegreeMapRotation

o GetLayerFrameCount

o GetLayerFrameId

o GetLayerFrameSteps

o GetLayerLink

o GetLayerMapModeMirror

o GetLayerMapModeTile

o GetLayerMapPixel

MADRIX Script (Programming Language Overview) 143

© 2014 inoage GmbH

o GetLayerMapTileEffectPixel

o GetLayerMapTileEffectVector

o GetLayerMapVector

o GetLayerMixMode

o GetLayerOpacity

o GetLayerPixelTileOffset

o GetLayerSolo

o GetLayerSubMaster

o GetLayerVectorMapRotation

o GetLayerVectorTileOffset

o GetPause

o GetSpeedMaster

o GetSubMaster

o IsLayerFrameFadeEnabled

o IsLayerMapped

o IsLayerMapRotation

o MapLayerEffectPixel

o MapLayerEffectVector

o MapLayerTileEffectPixel

o MapLayerTileEffectVector

o SetDescription

o SetLayerBlind

o SetLayerDegreeMapRotation

o SetLayerFrameId

o SetLayerLink

o SetLayerMapModeMirror

o SetLayerMapModeTile

o SetLayerMixMode

o SetLayerOpacity

o SetLayerPixelTileOffset

o SetLayerSolo

o SetLayerSubMaster

o SetLayerVectorMapRotation

o SetLayerVectorTileOffset

o SetPause

o SetSpeedMaster

o SetSubMaster

o SetFilter

MADRIX 2 Script Help and Manual144

© 2014 inoage GmbH

o GetFilter

o SetLayerFilter

o GetLayerFilter

3.3 List Of Functions (Grouped)

Overview

This chapter lists functions of the List Of Functions (Alphabetical Order) in groups of similar

functions.

Further information is provided in the chapter List Of Functions (Alphabetical Order).

Function Header Description MAS

Script

Macr
os
For

Effec
ts

Stora
ge

Place
Macr

o

Main
Outp

ut
Macr

o

Draw Functions

void Clear()
void Clear(color col)

Fills the whole matrix with the given color. The default
color (no color parameter) is black.

+ + + +

void ClearAlpha(int alpha) Sets the alpha channel of each pixel in the matrix to
the specified a lpha value.

+ + + +

void ClearColor(color col) Fills the entire matrix with the given color without
changing the alpha value.

+ + + +

void ChangeBrightness(color
col)

Adds the values of the specified color to the current
color of every pixel in the matrix.

+ + + +

void ColorReplace(color
oldCol, color newCol)

Replaces the given color o ldCo l by another one. + + + +

void SetPixel(color col, int x,
int y)

Sets the pixel at position (x ,y) to the specified color. »
Description & Examples

+ + + +

void SetPixelGreyscale(int x,
int y)

Renders the selected pixel at position (x ,y) in
greyscale. »Description & Examples

+ + + +

color GetPixel(int x, int y) Returns the color of the pixel at position (x ,y). + + + +

void GetPixelArea(color
matrix[][], int xSrc, int ySrc, int
w, int h,
int xDst, int yDst)

Retrieves data from the matrix and stores it into a 2-
dimensional field of colors. »Description

+ + + +

void DrawPixelArea(color
matrix[][], int xDst, int yDst, int
w, int h,
int xSrc, int ySrc, color filter)

Copies data from a 2-dimensional field of colors and
renders it to the matrix. »Description

+ + + +

void DrawPixelLine(color col,
int x1, int y1, int x2, int y2)

Draws a line from pixel (x1,y1) to (x2,y2) with the
specified color.

+ + + +

void DrawVectorLine(color
col, float x1, float y1, float x2,
float y2)

Draws a line from the relative position (x1,y1) to (x2,
y2) with the specified color.

+ + + +

MADRIX Script (Programming Language Overview) 145

© 2014 inoage GmbH

void DrawPixelRect(color col,
int x, int y, int w, int h)
void FillPixelRect(color col, int
x, int y, int w, int h)

Draws/Fills a rectangle starting from pixel (x ,y) with
the absolute width w and height h with the specified
color.

+ + + +

void DrawVectorRect(color
col, float x, float y, float w, float
h)
void FillVectorRect(color col,
float x, float y, float w, float h)

Draws/Fills a rectangle from the relative position (x ,y)
with the relative width w and height h with the specified
color.

+ + + +

void DrawPixelCircle(color
col, int x, int y, int rw, int rh)
void FillPixelCircle(color col,
int x, int y, int rw, int rh)

Draws/Fills a circle in the center of a specified
rectangle with the specified color. The rectangle is
defined by the pixel (x ,y) and the absolute width rw
and height rh.

+ + + +

void DrawVectorCircle(color
col, float x, float y, float rw,
float rh)
void FillVectorCircle(color col,
float x, float y, float rw, float rh)

Draws/Fills a circle in the center of a specified
rectangle with the specified color. The rectangle is
defined by the relative position (x ,y) and the relative
width rw and height rh.

+ + + +

void DrawPixelDiamond(color
col, int x, int y, int w, int h)
void FillPixelDiamond(color
col, int x, int y, int w, int h)

Draws/Fills a diamond starting from pixel (x ,y) with the
absolute width w and height h with the specified color.

+ + + +

void DrawVectorDiamond
(color col, float x, float y, float
w, float h)
void FillVectorDiamond(color
col, float x, float y, float w, float
h)

Draws/Fills a diamond starting from the relative
position (x ,y) with the relative width w and height h
with the specified color.

+ + + +

void DrawPixelEllipse(color
col, int mx, int my, int w, int h)
void FillPixelEllipse(color col,
int mx, int my, int w, int h)

Draws/Fills an ellipse at the absolute midpoint position
(m x,m y) with the absolute width w, absolute height h,
and the specified color.

+ + + +

void DrawVectorEllipse(color
col, float mx, float my, float w,
float h)
void FillVectorEllipse(color
col, float mx, float my, float w,
float h)

Draws/Fills an ellipse at the relative midpoint position (
m x ,m y) with the relative width w, relative height h, and
the specified color.

+ + + +

void DrawPixelStar(color col,
int x, int y, int w, int h)

Draws a star onto the matrix with the given width and
height at the given position. Position and size are given
as absolute pixel values.

+ + + +

void DrawVectorStar(color
col, float x, float y, float w, float
h)

Draws a star onto the matrix with the given width and
height at the given position. Both, position and size are
given as relative values between 0.0 and 1.0.

+ + + +

void DrawPixelCross(color col,
int x, int y, int w, int h)

Draws a cross onto the matrix with the given width and
height at the given position. Position and size are given
as absolute pixel values.

+ + + +

void DrawVectorCross(color
col, float x, float y, float w, float
h)

Draws a cross onto the matrix with the given width and
height at the given position. Both, position and size are
given as relative values between 0.0 and 1.0.

+ + + +

MADRIX 2 Script Help and Manual146

© 2014 inoage GmbH

void DrawPixelText(color c,
font f, string t, int x, int y, int
rotation)

Draws a text across the main output. co lo r c and font f
are structures. Valid values for ro ta tion are
ROTATION_TEXT_NONE, ROTATION_TEXT_90,
ROTATION_TEXT_180, ROTATION_TEXT_270. »
Example 1 »Example 2 »Example 3 »Example 4

+ + + +

void DrawVectorText(color c,
font f, string t, float x, float y,
int rotation)

Draws a vector text across the main output. co lo r c
and font f are structures. Valid values for ro ta tion are
ROTATION_TEXT_NONE, ROTATION_TEXT_90,
ROTATION_TEXT_180, ROTATION_TEXT_270.
Example: DrawPixelText(RED,f,"Hello",0,1,0);

+ + + +

void ShiftPixelMatrix(int x, int
y, int w, int h, int dir, int step)

Moves the area of the matrix (defined by x, y, w, and h
) step pixel into the given direction. Exemplary values

for d ir are SHIFT_UP, SHIFT_DOWN, or

SHIFT_UL. »List of Global Constants.

Please note that after shifting the pixels, the data is
lost. It is not possible to undo a shifting operation. x , y ,
w, h describe the rectangle that should be shifted. x
and y describe the upper left corner. w and h are the
width and height of the rectangle. The chapter about
the function provides more details.

+ + + +

void ShiftVectorMatrix(float x,
float y, float w, float h, int dir,
float step)

Moves the area of the matrix (defined by x, y, w, and h
) step pixel into the given direction. Exemplary values

for d ir are SHIFT_UP, SHIFT_DOWN, or

SHIFT_UL. »List of Global Constants.

Please note that after shifting the pixels, the data is
lost. It is not possible to undo a shifting operation. x , y ,
w, h describe the rectangle that should be shifted. x
and y describe the upper left corner. w and h are the
width and height of the rectangle. The chapter about
the function provides more details.

+ + + +

void VectorFloodFill(color col,
float x, float y)

Fills an single-colored area with the given color co l,
starting at the given position x and y. In contrast to
P ixe lFloodFill, the coordinates are given as floating
point values ranging from 0.0 to 1.0.

+ + + +

void PixelFloodFill(color col,
int x, int y)

Fills an single-colored area with the specified color co l,
starting at the given position x and y.

+ + + +

void InvertColor() Inverts the color of the entire matrix. + + + +

void InvertMatrix() Inverts the whole matrix. The top left pixel will be
moved to the bottom right and the bottom left pixel to
the top right.

+ + + +

void Greyscale() Converts the whole matrix to grey scaled values. + + + +

void SetVectorPixel(color,
float x, float y)

Draws one pixel at the given variable vector
coordinates. In addition to the coordinates, a co lo r
must be specified.

+ + + +

color GetVectorPixel(float x,
float y)

Returns the co lo r of the pixel drawn at vector
coordinates x and y.

+ + + +

void Filter(int filter) Renders a filter over the matrix. »Valid parameters
(Filters) »Description

+ + + +

void SetFilter(int filter) Applies a Filter Effect (FX) to the matrix. Valid values
for filte r are »Filters »Description

+ + +

int GetFilter() Returns which Filter Effect (FX) is applied to the matrix. + + +

MADRIX Script (Programming Language Overview) 147

© 2014 inoage GmbH

S2L Functions

int GetSoundLevel(int
channel)

Returns a value, ranging from 0 to 255, representing
the sound level of the stereo channel: 0 = left channel,
1 = right channel.

+ +

M2L Functions

int GetNoteValue(int note) Returns a value, ranging from 0 to 127, representing
the sound level of the specified note: 0 = C = 8.25
Hz, ..., 127 = G = 12.67 kHz.

+ +

int GetBassValue() Returns a value from 0 to 127 representing the sound
level of the bass tone.

+ +

void GetAllNoteValues(int buf
[])

Fills the field buf with the sound level values for each
note (buf[0] ... buf[127]). buf[index] can differ from 0
to 127.

+ +

void GetAllIntervals(int buf[]) Fills the field buf with the occurrences of each interval
(buf[0] ... buf[10]). buf[index] is true, if the specified
interval was analyzed.

+ +

int IsInterval(int index) Returns true if the specified interval (at the index
position, ranging from 0 to 10) was analyzed.

+ +

int IsNote(int note) Returns true if the specified note was analyzed. (0 = C
= 8.25 Hz, ..., 127 = G = 12.67 kHz)

+ +

int GetTonality() Returns a value, ranging from 0 to 11, representing the
tonality (0 = C, 1 = C#, 2 = D ...). The return value is
-1 if the tonality could not be determined.

+ +

int GetBassTone() Returns a value, ranging from 0 to 127, representing
the lowest tone (0 = C, 1 = C#, 2 = D, ...). The return
value is -1 if the lowest tone could not be determined.

+ +

int GetBassType() Returns a value, ranging from 0 to 11, representing the
bass type (0 = base bass, 1,2 = small/large second
bass, 3,4 = small/large third bass, ... , 10, 11 = small/
large seventh bass). The return value is -1 if the bass
type could not be determined.

+ +

int GetToneScale() Returns a value, ranging from 0 to 2, representing the
tone scale (0 = undetermined, 1 = major, 2 = minor).

+ +

int IsTonality() Returns true if the tonality could be determined. + +

Mathematical Functions

int random(int min, int max) Returns a random integer number in the value range
of m in to m ax.

+ + + +

float frandom() Returns a random float number in the value range of
0.0 to 1.0.

+ + + +

int min(int x, int y)
float fmin(float x, float y)

Returns the minimum value of x and y. + + + +

int max(int x, int y)
float fmax(float x, float y)

Returns the maximum value of x and y. + + + +

float abs(float x) Returns the absolute value of x. + + + +

float sqrt(float x) Returns the square root of x. + + + +

float pow(float x, float y) Returns the result of the calculation of x to the power
of y.

+ + + +

MADRIX 2 Script Help and Manual148

© 2014 inoage GmbH

float exp(float x) Returns the result of e (2.7182...) to the power of x. + + + +

float ln(float x) Returns the result of the natural logarithm of x. + + + +

float log10(float x) Returns the result of the common logarithm of x. + + + +

float hypot(float x, float y) Calculates the length of the hypotenuse of an
orthogonal triangle with x and y as the cathetus'
lengths.

+ + + +

float rad2deg(float a) Converts the angle a from radian measure to degrees. + + + +

float deg2rad(float a) Converts the angle a from degrees to radian measure. + + + +

float sin(float a)
float sinDeg(float a)

Returns the sine of the angle a in radian measure or
degrees, respectively.

+ + + +

float arcsin(float a)
float arcsinDeg(float a)

Returns the arc sine of the angle a in radian measure
or degrees, respectively.

+ + + +

float sinH(float a)
float sinHDeg(float a)

Returns the hyperbolic sine of the angle a in radian
measure or degrees, respectively.

+ + + +

float cos(float a)
float cosDeg(float a)

Returns the cosine of the angle a in radian measure or
degrees, respectively.

+ + + +

float arccos(float a)
float arccosDeg(float a)

Returns the arc cosine of the angle a in radian
measure or degrees, respectively.

+ + + +

float cosH(float a)
float cosHDeg(float a)

Returns the hyperbolic cosine of the angle a in radian
measure or degrees, respectively.

+ + + +

float tan(float a)
float tanDeg(float a)

Returns the tangent of the angle a in radian measure
or degrees, respectively.

+ + + +

float arctan(float a)
float arctanDeg(float a)

Returns the arc tangent of the angle a in radian
measure or degrees, respectively.

+ + + +

float tanH(float a)
float tanHDeg(float a)

Returns the hyperbolic tangent of the angle a in radian
measure or degrees, respectively.

+ + + +

float round(float f) Rounds the given value to its next integer value. The
value is rounded correctly, either up or down.

+ + + +

float trunc(float f) Truncates/cuts off the decimals from a floating point
value.

+ + + +

float ceil(float f) Rounds up the given value to the next integer value. E.
g. ceil(2.00001) = 3.0

+ + + +

float fmod(float denominator,
float divisor)

Calculates the remainder of the float division. + + + +

Mapping Functions

int IsMapped() Returns true if the current effect is mapped, otherwise
fa lse.

+ +

int GetMapPixel(int map[]) Retrieves the current mapping of the effect. The
coordinates and matrix dimension are returned in the
given field using absolute pixel coordinates. The
function returns true if the effect matrix is mapped.
fa lse is returned if the effect is full-sized onto the
matrix.

map[0] = x coordinate
map[1] = y coordinate
map[2] = width
map[3] = height

+ +

MADRIX Script (Programming Language Overview) 149

© 2014 inoage GmbH

int GetMapVector(float map[]) Retrieves the current mapping of the effect. The
coordinates and matrix dimension are returned in the
given field using relative values between 0.0 and 1.0.
But negative values are also possible. The function
returns true if the effect matrix is mapped. fa lse is
returned if the effect is full-sized onto the matrix.

map[0] = x-coordiante
map[1] = y-coordiante
map[2] = width
map[3] = height

+ +

void MapEffectPixel(int x, int
y, int w, int h)

Sets the mapping coordinates for the current effect.
Using this method the effect may be mapped to
different positions of the matrix. x and y are the start
coordinates using absolute pixel values. Negative
values are also possible in order to move the effect
matrix beyond the real matrix. w and h are the new
width and height of the mapped matrix.
Please note: If the size of the virtual effect matrix is
changed by this function, the effect will be restarted
and InitEffe ct is called.

+ +

void MapEffectVector(float x,
float y, float w, float h)

Sets the mapping coordinates for the current effect.
Using this method the effect may be mapped to
different positions of the matrix. x and y are the start
coordinates using relative values between 0.0 and 1.0.
Negative values are also possible. w and h are the new
width and height of the mapped matrix.
Please note: If the size of the virtual effect matrix is
changed by this function, the effect will be restarted
and InitEffe ct is called.

+ +

int GetMapTileEffectPixel(int
map[])

Retrieves the current map tile settings of the effect.
Returns true if mapping is active, otherwise fa lse. m ap
retrieves the settings as follows:

map[0] = x - start coordinate
map[1] = y - start coordinate
map[2] = w - width of the tile
map[3] = h - height of the tile

+ +

int GetMapTileEffectVector
(float map[])

Retrieves the current map tile settings of the effect.
Returns true if mapping is active, otherwise fa lse. m ap
retrieves the settings as followed:

map[0] = x - start coordinate
map[1] = y - start coordinate
map[2] = w - width of the tile
map[3] = h - height of the tile

+ +

void MapTileEffectPixel(int x,
int y, int w, int h)

Sets the tile coordinates for the current effect using
absolute values. x and y are the start coordinates of
the tile. w and h are the width and the height.

+ +

void MapTileEffectVector
(float x, float y, float w, float h)

Sets the tile coordinates for the current effect using
relative values. x and y are the start coordinates of the
tile. w and h are the width and the height.

+ +

int GetMapModeMirror() Returns the current mirror mode. + +

int GetMapModeTile() Returns the current tile mode. + +

void SetMapModeMirror
(mirrorMode)

Sets the mirror mode for effect tiling. For m irrorMode
one of the MAP_MIRROR_ values must be used.

+ +

void SetMapModeTile
(tileMode)

Sets the tile mode for effect tiling. For tileMode one of
the MAP_TILE_ values must be used.

+ +

MADRIX 2 Script Help and Manual150

© 2014 inoage GmbH

void SetVectorMapRotation
(float value, int anim)

Sets the absolute rotation value if anim is set to 0. Or
the function sets the relative rotation value (meaning
rotation animation) if anim is set to 1.

+ +

float GetVectorMapRotation() Returns the current rotation value. + +

void SetDegreeMapRotation
(int degree, int anim)

Sets the absolute rotation value (int degrees) if anim is
set to 0. Or the function sets the relative rotation value
(int degrees; meaning a rotation animation) if anim is
set to 1.

+ +

int GetDegreeMapRotation() Returns the current rotation value in degrees. + +

int IsMapRotation() Returns the status of the map rotation. 0 means the
rotation value is absolute (no animation) and 1 means
the rotation value is relative (animation).

+ +

String Functions

int findstring(int startIndex,
string text, string substring)

This functions looks for the substring in the given text.
The search starts at the given sta rtIndex. The first
character has an index of 0. The function starts its
search at a specified position of the entire tex t using
sta rtIndex and returns an index that describes the
position at which the substring begins. If the substring
is not found, -1 is returned.

+ + + +

string substring(string text, int
startIndex, int count)

The function extracts count characters from the given
tex t starting with sta rtIndex. If count is -1, all
characters of the string starting at sta rtIndex are
returned. »Example

+ + + +

int rfindstring(int startIndex,
string text, string substring)

This functions looks for the substring in the given text
from its end to the beginning. The function starts its
search at a specified position of the entire tex t using
sta rtIndex and returns an index that describes the
position at which the substring begins. If the substring
was not found, -1 is returned.

+ + + +

int startswith(string text, string
substring)

This function checks if the string tex t starts with the
given substring. If tex t starts with substring, true is
returned, otherwise fa lse.

+ + + +

int endswith(string text, string
substring)

This function checks if the string tex t ends with the
given substring. If tex t ends with substring, true is
returned, otherwise fa lse .

+ + + +

int isalnum(string text) Returns true if the given string contains only characters
and figures and if its length is greater then 0.
Otherwise, fa lse is returned.

+ + + +

int isalpha(string text) Returns true if the given string contains only characters
and if its length is greater than 0, otherwise fa lse is
returned.

+ + + +

int isnum(string text) Returns true if the given tex t represents a number.
This may be an integer number or a floating point
number (e.g. 1.3). Otherwise, it returns fa lse.

+ + + +

void tolower(string text) Converts each character of the given string into a
lower-case character.

+ + + +

void toupper(string text) Converts each character of the given string into an
upper-case character.

+ + + +

void strip(string text) Removes leading and ending white spaces, like space,
tabulator, line feeds, etc. from the given string.

+ + + +

MADRIX Script (Programming Language Overview) 151

© 2014 inoage GmbH

int strcmp(string str1, string
str2)

Compares two given strings with each other. If they
are equal, 0 is returned. -1 is returned if str1 is less
than str2. A value of 1 is returned if str1 is bigger than
str2.

+ + + +

void replace(string src, string
old, string new)

Replaces any appearances of o ld within src with new. + + + +

void tokenize(string src, string
delimiter, string reslist[])

Strips the src string into smaller pieces delimited by
characters within de lem ite r. The result is returned in
reslist. »Description

+ + + +

Effect-Controlling Functions

void SetFrameId(float id) Sets a new frame ID. If the given id is lower than 0, it
is set to 0.

+ +

float GetFrameId() Returns the ID of the current frame. »Description + +

float GetFrameSteps() Returns the number of frames between this and the
last call. »Description

+ +

float GetFrameCount() Retrieves the number of frames the effect produces
before it gets repeated. This is the same value which
was set by Se tFram eCount. The initial value is 1000.0.

+ +

Other Functions

void TRACE(variable) Writes the value of the specified variable into the Script
output window. Fulfills the same function as WriteText.

+ + + +

void WriteText(string s) Writes the specified message into the Script output
window.

+ + + +

int GetMatrixWidth() Returns the horizontal pixel count of the matrix. + + + +

int GetMatrixHeight() Returns the vertical pixel count of the matrix. + + + +

int GetColorDepth() Returns the color depth of the fixture. + + + +

date GetDate() Returns a date structure with the current date. + + + +

time GetTime() Returns a time structure with the current time. + + + +

int GetMixMode() Returns the currently set mix mode. »Valid parameters
(Mix modes)

+ +

void SetMixMode(int mode) Sets the mix mode of the effect. m ode may be one of
the values defined in Mix modes. If m ode is invalid,
nothing happens and a message is displayed in the
Script output of the Script Editor.

+ +

int IsFrameFadeEnabled() Returns true if frame fade is currently enabled, or fa lse
if not.

+ +

void EnableFrameFade(int
enable)

Enables or disables frame fade for the effect. If the
value enable is set to fa lse or 0, frame fade will be
disabled. Otherwise, it will be enabled.

+ +

int GetSubMaster() Returns the currently set submaster value of the effect.
The value ranges from 0 to 255.

+ +

void SetSubMaster(int value) Sets the submaster value of the effect. Valid values
range from 0 to 255.

+ +

int GetOpacity() Returns the currently set opacity value of the effect.
The value ranges from 0 to 255.

+ +

MADRIX 2 Script Help and Manual152

© 2014 inoage GmbH

void SetOpacity(int value) Sets the opacity value of the effect. Valid values range
from 0 to 255.

+ +

void SetLink(int enable) Enables or disables the option to link effect layers.
Valid values range are 0 (false) or 1 (true).

+ +

int GetLink() Returns 1 (i.e. true) if the option to link effect layers is
enabled, otherwise 0 (false).

+ +

int ReadAsync(string file,
string txt)

Reads content as text from a file into the string tx t. »
Description & Examples

+ + + +

int SetReadAsyncInterval
(string file, int interval)

Sets the reading inte rva l for a certain file. To be used
in combination with ReadAsync. »Description &
Examples

+ + + +

string GetApplicationPath() Locates the MADRIX.exe on your harddisk and returns
the path as a str ing. »Example

+ + + +

string
GetUserProfileDirectory()

Locates the directory of the current user profile on the
harddisk and returns the path as a str ing. »Example

+ + + +

void GetComputerName() Retrieves the name of the computer in use as defined
in Windows.

+ + + +

void GetUserName() Retrieves the name of the current user as defined in
Windows.

+ + + +

void SetInvalid() Use this function to set an already rendered frame/
effect as invalid. This means that the frame will be re-
rendered, which is the normal case. This can be useful
with dynamic effects since the content of the effect
does change all the time. Re-rendering is the normal
case as effects and output data are rendered with
several frames per second (FPS). See also »SetValid

+ +

void SetValid() Use this function to set an already rendered frame/
effect as valid. This means that the frame will not be
re-rendered. This can be useful with static effects since
the content of the effect does not change over time.
Re-rendering would be the normal case as effects and
output data are rendered with several frames per
second (FPS). See also »SetInvalid

+ +

time GetTimeCode() Returns a time structure with the currently used Time
Code. »Example

+ + + +

Version Number Functions

string
GetScriptEngineVersion()

Returns the script engine version and returns the value
as a str ing. »Example

+ + + +

string GetSoftwareVersion() Returns the MADRIX software version and returns the
value as a str ing. »Example

+ + + +

int
CheckScriptEngineVersion
(int major, int minor)

Checks the Script engine version in use and returns 1
if the version is equal or higher to the version specified
with m ajor and m inor. Or else 0 is returned. The
current Script Engine Version is 1.43. A useful function
to check if the minimum requirements of your script
are met. »Example

+ + + +

MADRIX Script (Programming Language Overview) 153

© 2014 inoage GmbH

int CheckSoftwareVersion(int
major, int minor, int subminor,
int subsubminor)

Checks the MADRIX software version in use and
returns 1 if the version is equal or higher to the version
specified with m ajor, m inor, subm inor, and
subsubm inor. Or else 0 is returned. The current
MADRIX version is 2.14.8.0. You can check which
version you are using by opening the Logfile in
MADRIX (at the beginning of the file) or check the
MADRIX.exe (perform a right-click->Properties-
>Version). A useful function to check if the minimum
requirements of your script are met. »Example

+ + + +

DMX-IN Functions

void GetDmxIn(int DmxValues
[], int startchannel, int channels,
int universe)

Stores the DMX-IN status of several DMX channels in
an array (Dm xVa lues[]). To use the function, choose a
DMX start channel and specify the number of channels
that should be scanned. Valid values for sta rtchanne l
range from 0 to 511. Valid values for channe ls range
from 0 to 511. Please note that a maximum of 512
channels can be scanned. This means that the sum of
sta rtchanne l + channe ls must be less or equal to 512.
In addition, specify the universe that should be
scanned. Valid values for unive rse range from 0 to
255. The default unive rse is 0, i.e. DMX Universe 1.

+ + + +

int GetDmxInChannel(int
channel, int universe)

Returns the status of the DMX-IN functionality of a
specified DMX channel (channe l). Valid values for
channe l range from 0 to 511. In addition, specify the
universe that should be scanned. Valid values for
unive rse range from 0 to 255. The default value of
unive rse is 0, i.e. DMX Universe 1.

+ + + +

int IsDmxInEnabled() Retrieves if DMX-IN is activated (1) or not (0). + + + +

PixelTranspose Functions

void
CreatePixelTransposeTable
(int size, int growsize)

Creates the pixel transpose table with the given size
and growsize.

+ + + +

void SetPixelTransposeEntry
(int idx, int srcX, int srcY, int
destX, int destY)

Adds one pixel transpose table entry defined by idx.
srcX and srcY are the x and y coordinates of the
source. destX and destY are the destination
coordinates.

+ + + +

void
AddPixelTransposeEntry(int
srcX, int srcY, int destX, int
destY)

Adds one entry to the pixel transpose table and resizes
the table if necessary. srcX and srcY are the x and y
coordinates of the source. destX and destY are the
destination coordinates.

+ + + +

void ExecutePixelTranspose
(int clear)

Executes the pixel transposition by using the pixel

transpose table. Using the value CLEAR will erase/

overwrite all pixels that are not defined as destination

with the the color black. Otherwise, NOCLEAR will

keep all pixels that are not defined as original
destination.

+ + + +

MIDI-IN Functions

int IsMidiInEnabled() Retrieves if MIDI-IN is activated (1) or not (0). + + + +

MADRIX 2 Script Help and Manual154

© 2014 inoage GmbH

int GetMidiInNoteValue(int
midinote, int midichannel, int
device)

Returns the MIDI note value of the specified MIDI note
(m idinote) and m idichanne l for the specified dev ice.
The default value of note, m id ichanne l, and dev ice is 0,
i.e. the first note, channel, and device. (Please note: In
MADRIX, the index for channels and devices starts with
1, while the index for MIDI notes starts with 0). »
Example

+ + + +

int GetMidiInControlValue(int
midicontrol, int midichannel, int
device)

Returns the MIDI control value of the specified MIDI
contro l change (m id icontro l) and m idichanne l for the
specified dev ice. The default value of contro l,
m id ichanne l, and dev ice is 0, i.e. the first control,
channel, and device. (Please note: In MADRIX, the
index for channels and devices starts with 1, while the
index for MIDI notes starts with 0). »Example

+ + + +

void GetMidiInNote(int
midivalues[], int startnote, int
notecount, int midichannel, int
device)

Stores the MIDI values for multiple notes in an array (
m idiva lues[]). To use the function, choose a start note
(sta rtnote) and the number of notes (notecount), as
well as the MIDI channel (m idichanne l) and the dev ice.
The default value of sta rtnote, m id ichanne l, and dev ice
is 0, i.e. the first control, channel, and device. The
default and maximum value of notecount is 128.
(Please note: In MADRIX, the index for channels and
devices starts with 1, while the index for MIDI notes
starts with 0). »Example

+ + + +

void GetMidiInControl(int
midivalues[], int startcontrol, int
controlcount, int midichannel, int
device)

Stores the MIDI values for multiple controls in an array
(m idiva lues[]). To use the function, choose a start
control (sta rtcontro l) and the number of controls (
contro lcount), as well as the MIDI channel (m idichanne l
) and the dev ice. The default value of sta rtnote,
m id ichanne l, and dev ice is 0, i.e. the first control,
channel, and device. The default and maximum value
of contro lcount is 128. (Please note: In MADRIX, the
index for channels and devices starts with 1, while the
index for MIDI notes starts with 0). »Example

+ + + +

Dimming Functions

void Dim(float value) Reduces the brightness of the complete virtual matrix.
Valid values for va lue range from 0.0 to 1.0.

+ + + +

void DimPixel(float value, int
x, int y)

Reduces the brightness of an individual pixel. x and y
are the coordinates of the pixel. Valid values for va lue
range from 0.0 to 1.0.

+ + + +

void DimPixelArea(float value,
int x, int y, int width, int height)

Reduces the brightness of a certain area of the virtual
matrix. x and y are the coordinates of the area (upper
left corner). w idth and he ight specify the width and
height of the area. Valid values for va lue range from
0.0 to 1.0.

+ + + +

Deprecated Functions

Deprecated functions are outdated functions and should not be used anymore.

Function Description

MADRIX Script (Programming Language Overview) 155

© 2014 inoage GmbH

void GetAllValues(int buf[]) Fills the field buf with the sound level values for each note (buf
[0] ... buf[127]). buf[index] can differ from 0 to 127.
Please note: This function is depracated. Use GetAllNoteValues
instead.

int GetValue(int note) Returns a value, ranging from 0 to 127, representing the sound
level of the specified note: 0 = C = 8.25 Hz, ..., 127 = G = 12.67
kHz.
Please note: This function is depracated. Use GetNoteValue
instead.

int GetSubmasterValue() Returns the currently set submaster value of the effect. The value
ranges from 0 to 255.
Please note: This function is depracated. Use GetSubMaster
instead.

void SetSubmasterValue(int value) Sets the submaster value of the effect. Valid values range from 0
to 255.
Please note: This function is depracated. Use SetSubMaster
instead.

3.4 List Of Global Variables And Constants

Variable / Define Description

Math

float PI Represents the number PI with a value of 3.141592.

S2L - Sound2Light

int SOUND_DATA_LEFT[] Contains the sound values of the left audio channel.

int SOUND_DATA_RIGHT[] Contains the sound values of the right audio channel.

int MAX_FREQUENCY_VOLUME Describes the maximum value of an entry in either

SOUND_DATA_LEFT or SOUND_DATA_RIGHT.

Drawing

color WHITE White color without alpha. {255,255,255,0,0}

color BLACK Black color without alpha. {0,0,0,0,0}

color RED Red color without alpha. {255,0,0,0,0}

color MAROON Maroon color without alpha. {128,0,0,0,0}

color GREEN Green color without alpha. {0,255,0,0,0}

color MADRIX_GREEN MADRIX green without alpha. {177,219,24,0,0}

MADRIX 2 Script Help and Manual156

© 2014 inoage GmbH

Variable / Define Description

color BLUE Blue color without alpha. {0,0,255,0,0}

color NAVY Navy color without alpha. {0,0,128,0,0}

color AQUA Aqua color without alpha. {0,255,255,0,0}

color CYAN Cyan color without alpha. {0,255,255,0,0}

color TURQUOISE Turquoise color without alpha. {0,255,255,0,0}

color TEAL Teal color without alpha. {0,128,128,0,0}

color FUCHSIA Fuchsia color without alpha. {255,0,255,0,0}

color PINK Pink color without alpha. {255,0,255,0,0}

color MAGENTA Magenta color without alpha. {255,0,255,0,0}

color PURPLE Purple color without alpha. {128,0,128,0,0}

color YELLOW Yellow color without alpha. {255,255,0,0,0}

color OLIVE Olive color without alpha. {128,128,0,0,0}

color LIGHT_GRAY Light gray color without alpha. {192,192,192,0,0}

color SILVER Silver color without alpha. {192,192,192,0,0}

color GRAY Gray color without alpha. {128,128,128,0,0}

color DARK_GRAY Dark gray color without alpha. {64,64,64,0,0}

color ORANGE Orange color without alpha. {255,128,0,0,0}

color BROWN Brown color without alpha. {139,69,19,0,0}

MADRIX Script (Programming Language Overview) 157

© 2014 inoage GmbH

Variable / Define Description

color SKY Sky color without alpha. {0,191,255,0,0}

color GOLD Gold color without alpha. {238,201,0,0,0}

color WHITE_ALPHA White color with alpha. {255,255,255,255,255}

color BLACK_ALPHA Black color with alpha. {0,0,0,0,255}

color COLOR COLOR may be used as last parameter for drawing functions. The

functions then draws the color channels red, green, blue, and
white.

color ALPHA ALPHA may be used as last parameter for drawing functions. The

functions then draws only the alpha channel.

color COLOR_AND_ALPHA COLOR_AND_ALPHA may be used as last parameter for

drawing functions. The function then draws both the color and the
alpha channel.

Mix Modes

int MIXMODE_NORMAL The normal mix mode.

int MIXMODE_DARKEN The darken (LTP) mix mode.

int MIXMODE_MULTIPLY The multiply/mask mix mode.

int MIXMODE_COLORBURN The colur burn mix mode.

int MIXMODE_LINEARBURN The linear burn mix mode.

int MIXMODE_LIGHTEN The lighten (HTP) mix mode.

int MIXMODE_SCREEN The screen mix mode.

int MIXMODE_COLORDODGE The color dodge mix mode.

int MIXMODE_LINEARDODGE The linear dodge mix mode.

int MIXMODE_OVERLAY The overlay mix mode.

int MIXMODE_SOFTLIGHT The softlight mix mode.

int MIXMODE_HARDLIGHT The hard light mix mode.

int MIXMODE_VIVIDLIGHT The vivid light mix mode.

int MIXMODE_LINEARLIGHT The linear light mix mode.

int MIXMODE_PINLIGHT The pin light mix mode.

int MIXMODE_HARDMIX The hardmix mix mode.

int MIXMODE_DIFFERENCE The difference mix mode.

MADRIX 2 Script Help and Manual158

© 2014 inoage GmbH

Variable / Define Description

int MIXMODE_EXCLUSION The exclusion mix mode.

int MIXMODE_AND The and mix mode.

int MIXMODE_OR The or mix mode.

int MIXMODE_XOR The xor mix mode.

int MIXMODE_NAND The not and mix mode.

int MIXMODE_NOR The not or mix mode.

int MIXMODE_MASK The RGBW alpha mask mix mode.

Filters / Storage Place and Layer Effects (FX)

General Filters

int FILTER_NONE Deactivates the filter.

Blur/Sharpen Filters

int FILTER_BLUR This filter blurs the output.

int FILTER_BLUR_BSPLINE This filter blurs the output applying a B-spline.

int FILTER_BLUR_CATMULL_ROM This filter blurs the output applying a Catmull-Rom spline.

int FILTER_BLUR_GAUSS This filter blurs the output applying the Gaussian function.

int FILTER_BLUR_MITCHELL This filter blurs the output applying the Mitchell-Netravali function.

int FILTER_SHARPE This filter sharpens the output.

Color Correction Filters

int FILTER_BRIGHTEN The brighten filter to light up the whole matrix.

int FILTER_DARKEN The darken filter to darken the whole matrix.

int FILTER_GREYSCALE The greyscale filter to render the matrix greyscale, i.e. in grey
colors.

int FILTER_INVERT_COLOR The invert color filter to invert every color channel.

Color Mask Filters

int FILTER_RED The red filter to filter out every color except the red color channel.

int FILTER_GREEN The green filter to filter out every color except the green color
channel.

int FILTER_BLUE The blue filter to filter out every color except the blue color
channel.

int FILTER_WHITE The white filter to filter out every color except the white color
channel.

int FILTER_RED_GREEN The red/green filter to filter out every color except the red and the
green color channel.

MADRIX Script (Programming Language Overview) 159

© 2014 inoage GmbH

Variable / Define Description

int FILTER_RED_BLUE The red/blue filter to filter out every color except the red and the
blue color channel.

int FILTER_GREEN_BLUE The green/blue filter to filter out every color except the green and
the blue color channel.

int FILTER_RED_WHITE The red/white filter to filter out every color except the red and the
white color channel.

int FILTER_GREEN_WHITE The green/white filter to filter out every color except the green
and the white color channel.

int FILTER_BLUE_WHITE The blue/white filter to filter out every color except the blue and
the white color channel.

int FILTER_RED_GREEN_BLUE The red/green/blue filter to filter out every color except the red,
the green, and the blue color channel.

int FILTER_RED_GREEN_WHITE The red/green/white filter to filter out every color except the red,
the green, and the white color channel.

int FILTER_RED_BLUE_WHITE The red/blue/white filter to filter out every color except the red,
the blue, and the white color channel.

int FILTER_GREEN_BLUE_WHITE The green/blue/white filter to filter out every color except the
green, the blue, and the white color channel.

Style Filters

int FILTER_EDGES The edges filter to make the edges of objects/motifs stand out.

int FILTER_EDGES_POPUP The edges popup filter to make the edges of objects/motifs stand
out.

int FILTER_EMBOSS The emboss filter to create an image with just highlights and
shadows.

int FILTER_EMBOSS_POPUP The emboss popup filter to create an image with just highlights
and shadows depending on the motif.

Transformation Filters

int FILTER_INVERT_H_MATRIX The filter flips the matrix horizontally.

int FILTER_INVERT_V_MATRIX The filter flips the matrix vertically.

int FILTER_INVERT_HV_MATRIX The filter flips the matrix horizontally and vertically. Therefore it
instantly rotates the matrix by 180°.

Shifting the Matrix

int SHIFT_UP Shifts the content of the defined area upwards.

int SHIFT_DOWN Shifts the content of the defined area downwards.

int SHIFT_LEFT Shifts the content of the defined area to the left.

int SHIFT_RIGHT Shifts the content of the defined area to the right.

int SHIFT_UL Shifts the content of the defined area to the upper left.

int SHIFT_UR Shifts the content of the defined area to the upper right.

int SHIFT_DL Shifts the content of the defined area to the bottom left.

MADRIX 2 Script Help and Manual160

© 2014 inoage GmbH

Variable / Define Description

int SHIFT_DR Shifts the content of the defined area to the bottom right.

int SHIFT_H_IN_OUT Shifts the content of the defined area from the middle of the the
area outwards in a horizontal direction.

int SHIFT_H_OUT_IN Shifts the content of the defined area from the outside of the the
area to the middle in a horizontal direction.

int SHIFT_V_IN_OUT Shifts the content of the defined area from the middle of the the
area outwards in a vertical direction.

int SHIFT_V_OUT_IN Shifts the content of the defined area from the outside of the the
area to the middle in a vertical direction.

int SHIFT_C_IN_OUT Shifts the content of the defined area from the middle of the the
area outwards in a vertical and a horizontal direction.

int SHIFT_C_OUT_IN Shifts the content of the defined area from the outside of the the
area to the middle in vertical and horizontal direction.

Map Modes

int MAP_MIRROR_NONE Disables the mirror map mode.

int MAP_MIRROR_H Mirrors the content of the matrix horizontally.

int MAP_MIRROR_V Mirrors the content of the matrix vertically.

int MAP_MIRROR_HV Mirrors the content of the matrix both vertically and horizontally.

int MAP_TILE_NONE Disables mapping tile modes.

int MAP_TILE_REPEAT Repeats tiles on the mapped matrix.

int MAP_TILE_MIRROR_H Mirrors tiles horizontally.

int MAP_TILE_MIRROR_V Mirrors tiles vertically.

int MAP_TILE_MIRROR_HV Mirrors tiles both vertically and horizontally.

Directions

int DIR_UP Sets an upward direction.

int DIR_DOWN Sets a downward direction.

int DIR_LEFT Sets the direction to 'left'.

int DIR_RIGHT Sets the direction to 'right'.

int DIR_UL Sets the direction to the upper left corner.

int DIR_UR Sets the direction to the upper right corner.

int DIR_DL Sets the direction to the lower left corner.

int DIR_DR Sets the direction to the lower right corner.

int DIR_NONE Sets no direction. Usually this is the same as stopping the
movement of an effect, if this is possible with the effect.

Others

MADRIX Script (Programming Language Overview) 161

© 2014 inoage GmbH

Variable / Define Description

string WHITE_SPACES A string which contains white spaces, like tab, new line, or space.
This can be used as delimiter string for Tokenizing.

Deprecated Functions

Deprecated functions are outdated functions and should not be used anymore.

Define Description

int FILTER_INVERT_MATRIX Please use int FILTER_INVERT_HV_MATRIX instead.

List Of Extra Script Information

Name of Value Description

@author The name of the author who wrote the script. »Description

@description Any text that describes the script. »Description

@name A name for the script. »Description

@version The current version of this script, if there is any. »Description

3.5 List Of Operations

Arithmetical And Logical Operations

Operato
r

Operand/
Data Type

Results in Data Type Description

++, -- int int Adds/subtracts 1 to/from the value of the operand.
Superior expressions are evaluated before the value of
the operand is changed.

+ int, float, bool,
string

Depends on operand data
types. It will be converted
into the more precise data
type.

Calculates the sum of the two operands or
concatenates two character strings.

MADRIX 2 Script Help and Manual162

© 2014 inoage GmbH

-, *, / int, float, bool Depends on operand data
types. It will be converted
into the more precise data
type.

Calculates the difference/product/quotient of the two
operands.

% int int Calculates the remainder of an integer division.

<, <=,
>, >=,
==, !=

int, float, bool,
string

bool Compares two operands.

! bool bool This is the logical NOT. It negates the following
operand.

|| bool bool This is the logical OR. The result is true, if at least one
operand is true. Both operands are evaluated in every
single case.

&& bool bool This is the logical AND. The result is true, if both
operands are true. Both operands are evaluated in
every single case.

Assignment Operations

Operator Description

= A simple assignment. The left operand gets the value of the right one.

+= For example: i += 4 corresponds to i = i + 4.

-= For example: i -= 4 corresponds to i = i - 4.

*= For example: i *= 4 corresponds to i = i * 4.

/= For example: i /= 4 corresponds to i = i / 4.

%= For example: i %= 4 corresponds to i = i % 4.

3.6 List Of Structures

Complex data types, so-called structures, consist of different elements. The elements of a

structure are accessed by their names in the following way: nam eOfVariable.nam eOfElem ent . For

example, c ol.r, if c ol is a variable of data type c olor. The following table is an overview of the

structures MADRIX Script provides.

Structure Elements Description

color int r
int g
int b
int w

co lor stores a color value.
There are 5 channels (red, green, blue, white, alpha) with values
between 0 and 255.

MADRIX Script (Programming Language Overview) 163

© 2014 inoage GmbH

int a Example: color c = {255, 255, 0, 0};
Members examples: c.r, c.g, c.b, c.w, c.a

»Script Example

date int day
int weekday
int month
int year

date stores a date.
Values for day include 1 to 31 for a single day of the month.
Values for weekday include: 0 = Sunday, 1 = Monday, ..., 6 =
Saturday.
Values for m onth include 1 to 12 for every single month of the
year.
Vales for year include year dates.

Example: date d = {24, 11, 1980};
Members examples: d.day, d.weekday, d.month, d.year

»Script Example

time int hour
int min
int sec

tim e stores a certain time.
Valid values are: hours: 0 .. 23, minutes: 0 .. 59, seconds: 0 .. 59.

Example: time t = {12, 05, 00};
Members examples: t.hour, t.min, t.sec

»Script Example

font int height
int width
int escapement
int orientation
int weight
int italic
int underline
int strikeOut
int charset
int outprecision
int clipprecision
int quality
int pitch
int family
string fontname

he ight specifies the size of the font and requires an intege r value.
w idth specifies the wideness of the font and requires an intege r
value.
escapem ent specifies the desired rotation angle in tenths of a
degree and requires an intege r value.
orienta tion should be set to the same value as escapem ent and
requires an intege r value.

we ight specifies the weight of the font. valid values are
FONT_WEIGHT_DONTCARE, FONT_WEIGHT_THIN,
FONT_WEIGHT_EXTRALIGHT, FONT_WEIGHT_LIGHT,
FONT_WEIGHT_NORMAL, FONT_WEIGHT_MEDIUM,
FONT_WEIGHT_SEMIBOLD, FONT_WEIGHT_BOLD,
FONT_WEIGHT_EXTRABOLD, FONT_WEIGHT_HEAVY

ita lic specifies the sloping of the font and requires an intege r
value: 0 (off) or 1 (on).

underline draws a line under the font and requires an intege r
value: 0 (off) or 1 (on).

str ikeOut draws a line through the middle of the font and requires
an intege r value: 0 (off) or 1 (on).

charse t specifies the character set of the font. Valid values are
CHARSET_ANSI, CHARSET_DEFAULT,
CHARSET_SYMBOL, CHARSET_SHIFTJIS,
CHARSET_HANGEUL, CHARSET_HANGUL,
CHARSET_GB2312, CHARSET_CHINESEBIG5,
CHARSET_OEM, CHARSET_JOHAB,
CHARSET_HEBREW, CHARSET_ARABIC,
CHARSET_GREEK, CHARSET_TURKISH,
CHARSET_VIETNAMESE, CHARSET_THAI,
CHARSET_EASTEUROPE, CHARSET_RUSSIAN,
CHARSET_MAC, CHARSET_BALTIC

MADRIX 2 Script Help and Manual164

© 2014 inoage GmbH

outprecis ion specifies how closely the output must match the
requested height, weight, and other attributes of a font. Valid
values are
PRECIS_OUT_DEFAULT, PRECIS_OUT_STRING,
PRECIS_OUT_CHARACTER, PRECIS_OUT_STROKE,
PRECIS_OUT_TT, PRECIS_OUT_DEVICE,
PRECIS_OUT_RASTER, PRECIS_OUT_TT_ONLY,
PRECIS_OUT_OUTLINE, PRECIS_OUT_SCREEN_OUTLINE,
PRECIS_OUT_PS_ONLY

clipprecis ion specifies how to clip characters that are partially
outside the clipping region. Valid values are
PRECIS_CLIP_DEFAULT, PRECIS_CLIP_CHARACTER,
PRECIS_CLIP_STROKE, PRECIS_CLIP_MASK,
PRECIS_CLIP_LH_ANGLES, PRECIS_CLIP_TT_ALWAYS,
PRECIS_CLIP_DFA_DISABLE (Windows Vista and up),
PRECIS_CLIP_EMBEDDED

qua lity specifies the quality of the font. valid values are
QUALITY_DEFAULT, QUALITY_DRAFT,
QUALITY_PROOF, QUALITY_NONANTIALIASED,
QUALITY_ANTIALIASED,
QUALITY_CLEARTYPE (Windows XP and up),
QUALITY_CLEARTYPE_NATURAL (Windows XP and up)

pitch specifies the pitch of the font. Valid values for are
PITCH_DEFAULT, PITCH_FIXED,
PITCH_VARIABLE, PITCH_MONO_FONT

fam ily specifies the font family that describes the font in a general
way. Valid values are
FONT_FAMILY_DONTCARE, FONT_FAMILY_ROMAN,
FONT_FAMILY_SWISS, FONT_FAMILY_MODERN,
FONT_FAMILY_SCRIPT, FONT_FAMILY_DECORATIVE

fontnam e requires a str ing. For example "Arial".

»Script Example

3.7 Table Of Frequencies

The two global fields SOUND_DATA_LEFT and SOUND_DATA_RIGHT hold the volume of the

frequencies. The following table indicates which value defines which frequency.

Index Spectrum in Hz Index Spectrum in Hz Index Spectrum in
Hz

0 5.38 171 1,841.09 341 5,733.22

1 10.77 172 1,857.24 342 5,765.52

2 16.15 173 1,873.39 343 5,792.43

3 21.53 174 1,894.92 344 5,819.35

4 26.92 175 1,911.07 345 5,851.65

MADRIX Script (Programming Language Overview) 165

© 2014 inoage GmbH

Index Spectrum in Hz Index Spectrum in Hz Index Spectrum in
Hz

5 32.30 176 1,927.22 346 5,878.56

6 37.68 177 1,943.37 347 5,905.48

7 43.07 178 1,959.52 348 5,937.78

8 48.45 179 1,975.67 349 5,964.70

9 53.83 180 1,991.82 350 5,991.61

10 59.22 181 2,013.35 351 6,023.91

11 64.60 182 2,029.50 352 6,056.21

12 69.98 183 2,045.65 353 6,088.51

13 75.37 184 2,067.19 354 6,115.43

14 80.75 185 2,083.34 355 6,142.35

15 86.13 186 2,099.49 356 6,174.65

16 91.52 187 2,121.02 357 6,206.95

17 96.90 188 2,137.17 358 6,239.25

18 102.28 189 2,153.32 359 6,266.16

19 107.67 190 2,174.85 360 6,293.08

20 113.05 191 2,191.00 361 6,325.38

21 123.82 192 2,207.15 362 6,357.68

22 129.20 193 2,228.69 363 6,389.98

23 134.58 194 2,244.84 364 6,416.89

24 139.97 195 2,260.99 365 6,443.81

25 145.35 196 2,282.52 366 6,476.11

26 150.73 197 2,304.05 367 6,508.41

27 156.12 198 2,320.20 368 6,540.71

28 166.88 199 2,336.35 369 6,573.01

29 172.27 200 2,357.89 370 6,605.31

30 177.65 201 2,379.42 371 6,637.61

31 188.42 202 2,400.95 372 6,664.53

32 193.80 203 2,417.10 373 6,691.44

33 199.18 204 2,433.25 374 6,723.74

34 209.95 205 2,454.79 375 6,756.04

35 215.33 206 2,476.32 376 6,788.34

36 220.72 207 2,492.47 377 6,820.64

37 226.10 208 2,508.62 378 6,852.94

38 231.48 209 2,530.15 379 6,885.24

MADRIX 2 Script Help and Manual166

© 2014 inoage GmbH

Index Spectrum in Hz Index Spectrum in Hz Index Spectrum in
Hz

39 242.25 210 2,551.68 380 6,917.54

40 247.63 211 2,573.22 381 6,949.84

41 253.02 212 2,594.75 382 6,982.14

42 263.78 213 2,610.90 383 7,014.44

43 274.55 214 2,627.05 384 7,046.74

44 279.93 215 2,648.58 385 7,079.04

45 285.31 216 2,670.12 386 7,111.34

46 296.08 217 2,691.65 387 7,143.64

47 306.85 218 2,713.18 388 7,175.94

48 312.23 219 2,734.72 389 7,208.24

49 317.61 220 2,750.87 390 7,240.54

50 328.38 221 2,767.02 391 7,272.84

51 339.15 222 2,788.55 392 7,305.14

52 344.53 223 2,810.08 393 7,337.44

53 349.91 224 2,831.62 394 7,369.74

54 360.68 225 2,853.15 395 7,402.04

55 371.45 226 2,874.68 396 7,434.34

56 382.21 227 2,896.22 397 7,466.64

57 387.60 228 2,917.75 398 7,498.94

58 392.98 229 2,939.28 399 7,531.24

59 403.75 230 2,960.82 400 7,563.54

60 414.51 231 2,982.35 401 7,595.84

61 425.28 232 3,003.88 402 7,628.14

62 436.05 233 3,025.42 403 7,660.44

63 441.43 234 3,046.95 404 7,698.12

64 446.81 235 3,063.10 405 7,735.80

65 457.58 236 3,079.25 406 7,768.10

66 468.35 237 3,100.78 407 7,800.40

67 479.11 238 3,122.31 408 7,832.70

68 489.88 239 3,149.23 409 7,865.00

69 495.26 240 3,176.15 410 7,897.30

70 500.65 241 3,197.68 411 7,934.99

71 511.41 242 3,219.21 412 7,972.67

72 522.18 243 3,240.75 413 8,004.97

MADRIX Script (Programming Language Overview) 167

© 2014 inoage GmbH

Index Spectrum in Hz Index Spectrum in Hz Index Spectrum in
Hz

73 532.95 244 3,262.28 414 8,037.27

74 543.71 245 3,283.81 415 8,069.57

75 554.48 246 3,305.35 416 8,101.87

76 565.25 247 3,326.88 417 8,139.55

77 576.01 248 3,348.41 418 8,177.23

78 586.78 249 3,369.95 419 8,209.53

79 597.55 250 3,391.48 420 8,241.83

80 608.31 251 3,413.01 421 8,274.13

81 619.08 252 3,434.55 422 8,311.82

82 629.85 253 3,456.08 423 8,349.50

83 640.61 254 3,483.00 424 8,381.80

84 651.38 255 3,509.91 425 8,414.10

85 662.15 256 3,531.45 426 8,451.78

86 672.91 257 3,552.98 427 8,489.46

87 683.68 258 3,574.51 428 8,521.77

88 694.45 259 3,596.04 429 8,554.06

89 705.21 260 3,617.58 430 8,591.75

90 715.98 261 3,644.49 431 8,629.43

91 726.75 262 3,671.41 432 8,661.73

92 737.51 263 3,692.94 433 8,699.41

93 748.28 264 3,714.48 434 8,737.10

94 759.05 265 3,736.01 435 8,769.40

95 769.81 266 3,757.54 436 8,807.08

96 780.58 267 3,784.46 437 8,844.76

97 791.35 268 3,811.38 438 8,877.06

98 802.11 269 3,832.91 439 8,914.75

99 812.88 270 3,854.44 440 8,952.43

100 823.65 271 3,881.36 441 8,984.73

101 834.41 272 3,908.28 442 9,022.41

102 850.56 273 3,929.81 443 9,060.10

103 866.71 274 3,951.34 444 9,092.39

104 877.48 275 3,972.88 445 9,130.08

105 888.24 276 3,999.79 446 9,167.76

106 899.01 277 4,026.71 447 9,200.06

MADRIX 2 Script Help and Manual168

© 2014 inoage GmbH

Index Spectrum in Hz Index Spectrum in Hz Index Spectrum in
Hz

107 909.78 278 4,048.24 448 9,237.74

108 920.54 279 4,069.78 449 9,275.43

109 931.31 280 4,096.69 450 9,313.11

110 942.08 281 4,123.61 451 9,350.79

111 958.23 282 4,145.14 452 9,388.48

112 974.38 283 4,172.06 453 9,426.16

113 985.14 284 4,198.97 454 9,463.84

114 995.91 285 4,220.51 455 9,501.53

115 1,006.68 286 4,247.42 456 9,533.83

116 1,022.83 287 4,274.34 457 9,571.51

117 1,038.98 288 4,295.87 458 9,609.19

118 1,049.74 289 4,322.79 459 9,646.88

119 1,060.51 290 4,349.71 460 9,684.56

120 1,076.66 291 4,371.24 461 9,722.24

121 1,092.81 292 4,398.16 462 9,759.92

122 1,103.58 293 4,425.07 463 9,797.61

123 1,114.34 294 4,446.61 464 9,835.29

124 1,125.11 295 4,473.52 465 9,872.97

125 1,141.26 296 4,500.44 466 9,910.66

126 1,157.41 297 4,527.36 467 9,948.34

127 1,168.18 298 4,554.27 468 9,986.02

128 1,184.33 299 4,581.19 469 10,023.71

129 1,200.48 300 4,608.11 470 10,061.39

130 1,211.24 301 4,629.64 471 10,099.07

131 1,222.01 302 4,656.56 472 10,142.14

132 1,238.16 303 4,683.47 473 10,179.82

133 1,254.31 304 4,710.39 474 10,217.50

134 1,265.08 305 4,737.30 475 10,255.19

135 1,281.23 306 4,758.84 476 10,292.87

136 1,297.38 307 4,785.75 477 10,330.55

137 1,308.14 308 4,812.67 478 10,368.24

138 1,324.29 309 4,839.59 479 10,411.30

139 1,340.44 310 4,866.50 480 10,448.99

140 1,351.21 311 4,893.42 481 10,486.67

MADRIX Script (Programming Language Overview) 169

© 2014 inoage GmbH

Index Spectrum in Hz Index Spectrum in Hz Index Spectrum in
Hz

141 1,367.36 312 4,920.34 482 10,529.74

142 1,383.51 313 4,947.25 483 10,567.42

143 1,399.66 314 4,979.55 484 10,605.10

144 1,415.81 315 5,006.47 485 10,642.79

145 1,426.57 316 5,033.39 486 10,680.47

146 1,442.72 317 5,060.30 487 10,723.54

147 1,458.87 318 5,087.22 488 10,761.22

148 1,469.64 319 5,114.14 489 10,798.90

149 1,485.79 320 5,141.05 490 10,841.97

150 1,501.94 321 5,167.97 491 10,879.65

151 1,518.09 322 5,194.89 492 10,917.33

152 1,534.24 323 5,221.80 493 10,960.40

153 1,550.39 324 5,248.72 494 11,003.47

154 1,566.54 325 5,281.02 495 11,041.15

155 1,582.69 326 5,307.93 496 11,078.83

156 1,598.84 327 5,334.85 497 11,121.90

157 1,614.99 328 5,361.77 498 11,159.58

158 1,631.14 329 5,388.68 499 11,197.27

159 1,641.91 330 5,420.98 500 11,240.33

160 1,658.06 331 5,447.90 501 11,283.40

161 1,674.21 332 5,474.82 502 11,321.08

162 1,690.36 333 5,501.73 503 11,358.76

163 1,706.51 334 5,528.65 504 11,401.83

164 1,722.66 335 5,560.95 505 11,444.90

165 1,738.81 336 5,587.87 506 11,487.96

166 1,754.96 337 5,614.78 507 11,525.65

167 1,771.11 338 5,647.08 508 11,563.33

168 1,787.26 339 5,674.00 509 11,606.40

169 1,808.79 340 5,700.92 510 11,649.46

170 1,824.94

MADRIX 2 Script Help and Manual170

© 2014 inoage GmbH

3.8 Table Of Notes

The following table provides an overview about the notes MADRIX is able to recognize during the

music analysis and the corresponding indices, which must be used for functions like GetNoteValue

to retrieve the value.

Note C C# D D# E F F# G G# A A# H

Index 0 1 2 3 4 5 6 7 8 9 10 11

Freq.
(Hz)

8.25 8.56 9.28 9.90 10.30 11.00 11.60 12.38 13.2 13.75 14.85 15.47

Index 12 13 14 15 16 17 18 19 20 21 22 23

Freq.
(Hz)

16.50 17.19 18.60 19.80 20.63 22.00 23.20 24.75 26.40 27.50 29.70 30.94

Index 24 25 26 27 28 29 30 31 32 33 34 35

Freq.
(Hz)

33.00 34.38 37.12
8

39.60 41.25 44.00 46.40 49.50 52.80 55.00 59.40 61.88

Index 36 37 38 39 40 41 42 43 44 45 46 47

Freq.
(Hz)

66.00 68.75 74.25 79.20 82.50 88.00 92.80 99.00 105.6
0

110.0
0

118.8
0

123.7
5

Index 48 49 50 51 52 53 54 55 56 57 58 59

Freq.
(Hz)

132.00 137.0
0

148.5
0

158.4
0

465.0
0

176.0
0

185.6
0

198.0
0

211.2
0

220.0
0

237.6
0

247.5
0

Index 60 61 62 63 64 65 66 67 68 69 70 71

Freq.
(Hz)

264.00 275.0
0

297.0
0

316.8
0

330.0
0

352.0
0

371.2
5

396.0
0

422.4
0

440.0
0

475.2
0

495.0
0

Index 72 73 74 75 76 77 78 79 80 81 82 83

Freq.
(Hz)

528.00 550.0
0

594.0
0

633.6
0

660.0
0

704.0
0

742.5
0

792.0
0

844.8
0

880.0
0

950.4
0

990.0
0

Index 84 85 86 87 88 89 90 91 92 93 94 95

Freq.
(Hz)

1,056 1,100 1,188 1,267
.2

1,320 1,408 1,485 1,584 1,689
.6

1,760 1,900
.8

1,980

Index 96 97 98 99 100 101 102 103 104 105 106 107

Freq.
(Hz)

2,112 2,200 2,376 2,534
.4

2,640 2,816 2,970 3,168 3,379
.2

3,520 3,801
.6

3,960

Index 108 109 110 111 112 113 114 115 116 117 118 119

Freq.
(Hz)

4,224 4,400 4,752 5,068
.8

5,280 5,632 5,940 6,336 6,758
.4

7,040 7,603
.2

7,920

Index 120 121 122 123 124 125 126 127

Freq.
(Hz)

8,558 8,800 9,504 10,13
7

10,56
0

11,26
4

11,88
0

12,67
2

MADRIX Script (Programming Language Overview) 171

© 2014 inoage GmbH

3.9 Examples

Script Examples for Specific Functions

GetApplicationPath

Copy and paste the script below and monitor the 'Script output' to see the result.

@scriptname="Example GetApplicationPath";
@author="";
@version="MADRIX 2.8a";
@description="Display the application path,
running from script engine version 1.25 and MADRIX 2.8a";

void InitEffect()
{

}

void PreRenderEffect()
{

}

void PostRenderEffect()
{

WriteText(GetApplicationPath());
}

(Description)

GetUserProfileDirectory

Copy and paste the script below and monitor the 'Script output' to see the result.

@scriptname="Example GetUserProfileDirectory";
@author="";
@version="MADRIX 2.8a";
@description="Display the user profile directory,
running from script engine version 1.25 and MADRIX 2.8a";

void InitEffect()
{

}

void PreRenderEffect()

MADRIX 2 Script Help and Manual172

© 2014 inoage GmbH

{

}

void PostRenderEffect()
{

WriteText(GetUserProfileDirectory());
}

(Description)

CheckScriptEngineVersion

Copy and paste the script below and monitor the 'Script output' to see the result.

 @scriptname="Example CheckScriptEngineVersion";
 @author="";
 @version="MADRIX 2.8a";
 @description="Check script engine version number,
 running from script engine version 1.25 and MADRIX 2.8a";

 void InitEffect()
 {}
 void PreRenderEffect()
 {}
 void PostRenderEffect()
 {
 if(CheckScriptEngineVersion(1,25)>0)
 WriteText("Script engine version ok");
 else
 WriteText("Script engine version too old");
 }

(Description)

CheckSoftwareVersion

Copy and paste the script below and monitor the 'Script output' to see the result.

@scriptname="Example CheckSoftwareVersion";
@author="";
@version="MADRIX 2.8a";
@description="Check software version number,
running from script engine version 1.25 and MADRIX 2.8a";

void InitEffect()
{}
void PreRenderEffect()
{}
void PostRenderEffect()

MADRIX Script (Programming Language Overview) 173

© 2014 inoage GmbH

{
if(CheckSoftwareVersion(2,8,1,0)>0)

WriteText("Madrix version ok");
else

WriteText("Madrix version too old");
}

(Description)

GetScriptEngineVersion

Copy and paste the script below and monitor the 'Script output' to see the result.

 @scriptname="Example GetScriptEngineVersion";
 @author="";
 @version="MADRIX 2.8a";
 @description="Get MADRIX version,
 running from script engine version 1.25 and MADRIX 2.8a";

 void InitEffect()
 {}
 void PreRenderEffect()
 {}
 void PostRenderEffect()
 {
 WriteText("ScriptEngine " +GetScriptEngineVersion());
 }

(Description)

GetSoftwareVersion

Copy and paste the script below and monitor the 'Script output' to see the result.

 @scriptname="Example GetSoftwareVersion";
 @author="";
 @version="MADRIX 2.8a";
 @description="Get MADRIX version,
 running from script engine version 1.25 and MADRIX 2.8a";

 void InitEffect()
 {}
 void PreRenderEffect()
 {}
 void PostRenderEffect()
 {
 WriteText("MADRIX " +GetSoftwareVersion());
 }

MADRIX 2 Script Help and Manual174

© 2014 inoage GmbH

(Description)

SetText (SCE Ticker) and GetTime

Copy and paste the script into the Macro Editor of the effect SCE Ticker and monitor the Preview

Windows to see the result.

@scriptname="local ticker time";
@author="jky";
@version="MADRIX 2.10";
@description="Set time in SCE_Ticker text with GetTime and pm & am";

void InitEffect()
{}

void PreRenderEffect()
{
 time t=GetTime();
 string m,s;

 if(t.min<10)
 m="0"+(string)t.min;
 else

m=(string)t.min;
 if(t.sec<10)

s="0"+(string)t.sec;
 else

s=(string)t.sec;
 if(t.hour>12)

SetText((string)(t.hour-12)+":"+m+":"+s+" pm");
 else

SetText((string) t.hour +":"+m+":"+s+" am");
}

void PostRenderEffect()
{}

void MatrixSizeChanged()
{
InitEffect();

}

(Description)

DrawPixelText - Font Size

MADRIX Script (Programming Language Overview) 175

© 2014 inoage GmbH

Draws the text "Hello", which constantly increases over and over again.

@scriptname="";
@author="";
@version="";
@description="";

font f={10,
 0,
 0,
 0,
 FONT_WEIGHT_BOLD,
 0,
 0,
 0,
 CHARSET_DEFAULT,
 PRECIS_OUT_DEFAULT,
 PRECIS_CLIP_DEFAULT,
 QUALITY_DEFAULT,
 PITCH_DEFAULT,
 FONT_FAMILY_SWISS,
 "Arial"};

int i=0;

void InitEffect()
{
 i=0;
}

void PreRenderEffect()
{
}

void PostRenderEffect()
{
 i++;
 f.height=i%40;
 DrawPixelText(WHITE,f,"Hello",0,0,ROTATION_TEXT_NONE);
}

void MatrixSizeChanged()
{
 InitEffect();
}

(Description)

DrawPixelText - Font Color

Draws the text "Hello" and changes its color.

MADRIX 2 Script Help and Manual176

© 2014 inoage GmbH

@scriptname="";
@author="";
@version="";
@description="";

font f={20,
 0,
 0,
 0,
 FONT_WEIGHT_BOLD,
 0,
 0,
 0,
 CHARSET_DEFAULT,
 PRECIS_OUT_DEFAULT,
 PRECIS_CLIP_DEFAULT,
 QUALITY_DEFAULT,
 PITCH_DEFAULT,
 FONT_FAMILY_SWISS,
 "Arial"};

int i=0;
color col;
void InitEffect()
{
 i=0;
 col=WHITE;
}

void PreRenderEffect()
{
}

void PostRenderEffect()
{
 i++;
 col.r=i%255;
 col.g=(i%512)/2;
 col.b=(i%767)/3;
 DrawPixelText(col,f,"Hello",0,0,ROTATION_TEXT_NONE);
}

void MatrixSizeChanged()
{
 InitEffect();
}

(Description)

DrawPixelText - Moving Text

MADRIX Script (Programming Language Overview) 177

© 2014 inoage GmbH

Draws the text "Hello", which moves from the upper left to the lower right.

@scriptname="";
@author="";
@version="";
@description="";

font f={20,
 0,
 0,
 0,
 FONT_WEIGHT_BOLD,
 0,
 0,
 0,
 CHARSET_DEFAULT,
 PRECIS_OUT_DEFAULT,
 PRECIS_CLIP_DEFAULT,
 QUALITY_DEFAULT,
 PITCH_DEFAULT,
 FONT_FAMILY_SWISS,
 "Arial"};

int i=0;

void InitEffect()
{
 i=0;
}

void PreRenderEffect()
{
}

void PostRenderEffect()
{
 i++;
 i=i%50;
 DrawPixelText(RED,f,"Hello",i,i,ROTATION_TEXT_NONE);
}

void MatrixSizeChanged()
{
 InitEffect();
}

(Description)

DrawPixelText - Rotating Text

Draws the text "Hello", which rotates by 90°, 180°, and 270°.

MADRIX 2 Script Help and Manual178

© 2014 inoage GmbH

@scriptname="";
@author="";
@version="";
@description="";

font f={20,
 0,
 0,
 0,
 FONT_WEIGHT_BOLD,
 0,
 0,
 0,
 CHARSET_DEFAULT,
 PRECIS_OUT_DEFAULT,
 PRECIS_CLIP_DEFAULT,
 QUALITY_DEFAULT,
 PITCH_DEFAULT,
 FONT_FAMILY_SWISS,
 "Arial"};

int i=0;

void InitEffect()
{
 i=0;
}

void PreRenderEffect()
{
}

void PostRenderEffect()
{
 i++;
 i=i%400;
 switch(i/100)
 {
 case 0:DrawPixelText(RED,f,"Hello",25,25,ROTATION_TEXT_NONE);break;
 case 1:DrawPixelText(RED,f,"Hello",25,25,ROTATION_TEXT_90);break;
 case 2:DrawPixelText(RED,f,"Hello",25,25,ROTATION_TEXT_180);break;
 case 3:DrawPixelText(RED,f,"Hello",25,25,ROTATION_TEXT_270);break;
 }
}

void MatrixSizeChanged()
{
 InitEffect();
}

(Description)

MADRIX Script (Programming Language Overview) 179

© 2014 inoage GmbH

GetTimeCode

Retrieves the currently used Time Code. This Script works in all four Script locations.

@scriptname="GetTimeCode";
@author="jky";
@version="2.14a";
@description="Returns the currently used Time Code";

void InitEffect()
{

}

void PreRenderEffect()
{

}

void PostRenderEffect()
{
time TimeCode=GetTimeCode();
WriteText("Timecode: "+(string)TimeCode.hour+":"+(string)TimeCode.min+":"

 +(string)TimeCode.sec);
}

void MatrixSizeChanged()
{
InitEffect();
}

(Description)

GetDmxIn

Uses incoming DMX-IN data to show colors on the LED matrix. This Script works in all four Script

locations.

@scriptname="DmxInToColor";
@author="jky";
@version="1.0";
@description="Read DMX-IN data and makes to matrix color";

const int CHANNEL_START=0; // start by channel 1
const int CHANNEL_COUNT=3; // use this number of channels
const int UNIVERSE=0; // use this universe for DMX-IN data
int DmxValues[]; // field of DMX Universe
color col;

MADRIX 2 Script Help and Manual180

© 2014 inoage GmbH

void InitEffect()
{
 col=BLACK;
 if(IsDmxInEnabled()==0)// if DMX-In is enabled
 WriteText("DMX-IN is disabled!");
}

void RenderEffect()
{
 if(IsDmxInEnabled()==1)// if DMX-In enabled?
 {
 // Get the DMX values from selected Universe
 GetDmxIn(DmxValues,CHANNEL_START,CHANNEL_COUNT,UNIVERSE);
 // set dmx value to color
 col.r= DmxValues[0]; // channel 1 to red
 col.g= DmxValues[1]; // channel 2 to green
 col.b= DmxValues[2]; // channel 3 to blue
 }
 else
 col=BLACK;// no DMX then no color
 Clear(col);// set complete matrix with color

 //Information for help
 //WriteText("Set color with Value Red="+(string)col.r+", Green="+(string)col.g+",
 Blue="+(string)col.b);
}

void MatrixSizeChanged()
{
 InitEffect();
}

(Description)

GetMidiInNoteValue and GetMidiInControlValue

Uses incoming MIDI-IN data to control the Master Fader. This Script works in the Main Output

Macro.

@scriptname="MIDItoMaster";
@author="jky";
@version="2.14b";
@description="Uses incoming MIDI to control the Master Fader";

const int NOTE=0; // MIDI Note for control
const int CHANNEL=0; // MIDI Channel for control
const int DEVICE_ID=0; // MIDI Device for control

void InitEffect()
{

MADRIX Script (Programming Language Overview) 181

© 2014 inoage GmbH

}

void PreRenderEffect()
{

}

void PostRenderEffect()
{
 if(IsMidiInEnabled()==1)
 {
 const float Value = (float)GetMidiInNoteValue(NOTE,CHANNEL,DEVICE_ID)/127.0;

 // MIDI NOTES 0x9, 0x8
 //const float Value = (float)GetMidiInControlValue(NOTE,CHANNEL,DEVICE_ID)/127.0;

 // MIDI CONTROLLER 0xb
 SetMasterFader(Value*255);

 }
}

void MatrixSizeChanged()
{
InitEffect();

}

(Description)

GetMidiInNote and GetMidiInControl

Uses incoming MIDI-IN data to control the Master Fader and the Audio Level. This Script works in

the Main Output Macro.

@scriptname="MIDItoMasterandAudio";
@author="jky";
@version="2.14b";
@description="Uses incoming MIDI of 2 channels to control the Master Fader and Audio Level";

const int NOTE=0; // MIDI Note for control
const int NOTE_COUNT=2; // MIDI Note Count for control
const int CHANNEL=0; // MIDI Channel for control
const int DEVICE_ID=0; // MIDI Device for control

int MidiData[];

void InitEffect()
{

}

void PreRenderEffect()
{

MADRIX 2 Script Help and Manual182

© 2014 inoage GmbH

}

void PostRenderEffect()
{
 if(IsMidiInEnabled()==1)
 {
 GetMidiInNote(MidiData, NOTE, NOTE_COUNT, CHANNEL, DEVICE_ID);

 // MIDI NOTES 0x9, 0x8
 //GetMidiInControl(MidiData, NOTE, NOTE_COUNT, CHANNEL, DEVICE_ID);

 // MIDI NOTES 0xb
 SetMasterFader(MidiData[0]*255/127);
 SetAudioFader(MidiData[1]*255/127);

 }
}

void MatrixSizeChanged()
{
InitEffect();

}

(Description)

Installed Examples

Throughout this MADRIX Script Help and Manual a lot of practical script examples are already

given.

If you would like to see some more examples, several exemplary scripts are already installed on

your PC if you have enabled this option during the installation process.

MADRIX Script (Programming Language Overview) 183

© 2014 inoage GmbH

You can find the examples on your hard disk. Please navigate to C:

\Users\USERNAME\Documents\MADRIX\scripts.

(Please choose your Windows username for USERNAME).

The folder contains a link "Samples". This link will take you to another folder that contains various

examples.

Part

IV

MAS Script Effect 185

© 2014 inoage GmbH

4 MAS Script Effect

4.1 Overview

Introduction

The MAS Script effect provides the potential to create your own light effects. If you want to

create a completely new effect MADRIX does not offer, this is the right place for you offering

numerous functions. Basically, the MAS Script effect is an effect like any other effect in MADRIX,

except that it interprets a script written in MADRIX Script to calculate the effect.

In this way, the MAS Script effect has full control over the effect matrix. It is called continuously

to render the effect onto the matrix. A script of the MAS script effect can also manipulate the

effect speed in order to let the effect run slower or faster, for example.

It was already mentioned that scripts are stored as part of the effect. This means that they are

part of a stored effect or setup. Moreover, it is possible to save scripts as separate files. The

extension of a script for the MAS script effect is *.m as. The extension of a compiled script is *.

m ac s.

Remember the MAS Script effect is an usual effect of MADRIX. For that reason, its result can be

controlled and manipulated by a macro like all the other effects.

The MAS Script Effect is a normal effect of MADRIX and can

be selected from the effect list like all the other effects.

MADRIX 2 Script Help and Manual186

© 2014 inoage GmbH

Functions Called By MADRIX

There are several functions called by MADRIX in order to let the script react to different events.

void InitEffect()

void RenderEffect()

void MatrixSizeChanged()

If a function is not needed by a script, it is not necessary to implement it. Regarding InitEffec t

and RenderEffec t a message is printed out if one of them is missing. This is not an error, but only

an information for the developer of the script.

I nitEffec t

(automatically included in a new script)

InitEffec t is called by MADRIX whenever the script needs to be initialized. This is the case after

compiling and starting a new script or when the user pressed the "Start" button of the Script

Editor. A script can assume that any global variable is initialized with 0 and that any global field is

empty as long as it has not been initialized with any value.

This function is the right place to initialize global variables, reset any fields, set the speed of an

effect, or whatever is necessary to (re)start the script.

MAS Script Effect 187

© 2014 inoage GmbH

RenderEffec t

(automatically included in a new script)

This function is called whenever the effect needs to be rendered. The number of calls per second

depends on the currently set speed of the effect. It can be received with the help of the

function GetSpeed() and set with the function SetSpeed. This is the right place to calculate the

effect and draw it onto the matrix.

MartrixSizeChanged

(automatically included in a new script)

Mat ixSizeChanged is called after the size of the matrix has been changed. This may be due to a

change to the matrix settings or because a new map setting was set, e.g. caused by the call of a

map function.

Standard Outline

A newly created macro for an effect will look like this:

@scriptname="";
@author="";
@version="";
@description="";

void InitEffect()
{

}

void RenderEffect()
{

}

void MatrixSizeChanged()
{
InitEffect();

}

MADRIX 2 Script Help and Manual188

© 2014 inoage GmbH

4.2 Functions

Specific Resources

Functions called by MADRIX
MAS Script Effect: Available Functions
Deprecated Functions

Controlling the Tempo

General Resources

Keyword Search
List Of Functions (Alphabetical Order)
List Of Functions (Grouped)
List Of Global Variables and Constants
List Of Operations
List Of Structures
Table Of Frequencies
Table Of Notes

Available Functions

It is useful to consult the List of Functions (Alphabetical Order) for non-specific functions.

In addition to that, there are several other functions available which are not available by macros.

MAS Script-Specific Functions

Function Description

void SetBpm(int bpm) Sets the speed of the effect in BPM. Valid values range from 0 to
9999.

int GetBpm() Returns the speed of the effect in BPM.

void DoPreRender() Tells the effect that the script function PreRenderEffect is to be
called before the next call of RenderEffect. See above for further
details.

void SetFrameId(float id) Sets a new frame id. If the given id is less than 0, it is set to 0.
See below for further details.

float GetFrameId() Returns the ID of the current frame. See below for further details.

MAS Script Effect 189

© 2014 inoage GmbH

float GetFrameSteps() Returns the number of frames which are between this and the last
call. See below for further details.

void SetFrameCount(float fc) Set the number of frames the effect produces before it gets
repeated. See below for further details.

float GetFrameCount() Get the number of frames the effect produces before it gets
repeated. This is the same value which was set by Se tFram eCount.
The initial value is 1000.0. See below for further details.

void SetFixedFrameRate(int bpm, int
enable)

Tells the effect to use a fixed frame rate which is independet of the
speed set by Se tBpm or by the slider of the GUI. bpm tells the
effect with how much BPM it should render. Valid values range
from 0 to 3000, that is between 0Hz and 50Hz. If enable is true,
fixed frame rate rendering will be enabled, otherwise it will be
disabled. If enable is fa lse, the bpm value is ignored and the
current set beats per minute will determine the speed.

void SetUseFloatFrames(int enable) Enables usage of frames as floating-point frames. This enables
rational values for the function G etFram eSteps, instead of integer
values only. In case of having a fixed frame rate, float frames are
always enabled and cannot be disabled.

Deprecated Functions

Deprecated functions are outdated functions and should not be used anymore.

Function Description

void SetSpeed(float speed) Sets the speed of the effect in FPS. Valid values are between
inclusive 0 and 166.
Please note: This function is deprecated and may be removed in
one of the next releases. Use Se tBpm instead.

float GetSpeed() Returns the speed of the effect in FPS.
Please note: This function is deprecated and may be removed in
one of the next releases. Use G etBpm instead.

Using 'FrameCount' And 'FrameId'

Please note: The script of the MAS Script effect itself is able to control the Frame ID and the

frame count. Setting the frame count or Frame ID within both a macro and a script may result in

undesired behavior. More information can be found in the chapter Controlling a Script per 'FrameId'

.

MADRIX 2 Script Help and Manual190

© 2014 inoage GmbH

4.3 Using GUI Elements (User Interaction)

Introduction

This chapter is about interaction with the graphical user interface of MADRIX in addition to just

writing a source code. In this way, working with elements of the GUI (graphical user interface)

expands the options of the MAS Script effect widely. You will have the possibility to set values a

script should use, such as a color or the text to write. MADRIX Script provides several GUI

elements, which can be placed on the effects dialog. The picture below exemplarily shows the

available graphical elements.

Exemplary GUI Elements of the MAS Script Effect

As you can see, it is possible to create 4 addditonal elements. There is a text field to enter text, a

color control to select a color, a slider, and a button. Each different element will always be placed

in a new line.

Creating GUI Elements

Creating a GUI element within MADRIX Script is as simple as declaring a variable. The

corresponding element is created automatically. You just have to declare a type of element and a

variable/name for it. Here is how it generally looks like:

ctrledit myText;
ctrlcolor myColor;
ctrlslider mySlider;
ctrlbutton myButton;

MAS Script Effect 191

© 2014 inoage GmbH

It is as simple as that. MADRIX Script will create the elements on the effect dialog and they can

be utilized right away. Since GUI elements should last as long as the script is loaded, those

variables need to be global.

Please note: You cannot create local variables of those types. GUI elements have to be global!

Furthermore, it is not possible to declare such variables as persistent . But their values will always

be stored and reloaded automatically. It is also not allowed to copy or assign variables of those

types.

Within MADRIX Script those data types are simple structures. Hence, you can initialize them like

any other structures. The particular structures are described below. Here is an example which

creates the GUI shown above:

ctrledit myText = {"Text", EDIT_ALIGN_LEFT, "MADRIX"};
ctrlcolor myCol = {"Color", MADRIX_GREEN};
ctrlslider mySlider = {"Range", 100, 150, 200};
ctrlbutton myButton = {"Button", "OnButton"};

Explanation:

This source code creates each GUI elements and initializes them with specific values. The first

value always represents the description that is used to label the corresponding element. Then,

several values may follow which are different for each structure. For example, the slider is

initialized with a range of 100 to 200 and a starting value of 150.

MADRIX 2 Script Help and Manual192

© 2014 inoage GmbH

Using GUI Elements

After creating an element, it can be used like controls of the same kind in MADRIX. A slider can be

moved by using the mouse or by writing a value into the edit field next to it, etc. The script can

access these values via the different elements of the corresponding structure. The table below

shows those structures in detail:

List Of Available Elements

Structure Entries GUI Element/
Description

ctrlbutton string label The
label for
the
button.

string proc The
name of
the
function
which is
called
after
the
button
has
been
pressed
.

string tooltip The
tooltip
for the
button.

ctrlbutton
provides a
button. A
function must be
assigned that is
called whenever
the button was
pressed. This is
done by
assigning the
name of the
function to the
proc element of
a ctr lbutton
variable. The set
function must be

of the type void
function().

The too ltip
member holds
the tooltip for the
button, which is
shown when the
user holds the
mouse over the
button for some
seconds.

»Descriptive
Example
»Example 1
»Example 2
»Example 3

MAS Script Effect 193

© 2014 inoage GmbH

Structure Entries GUI Element/
Description

ctrlbutton2 string label1 The
label for
the first
button.

string proc1 Function
handler
for the
first
button.

string label2 Label
for the
second
button.

string proc2 Function
handler
for the
second
button.

string tooltip1 Tooltip
for the
first
button.

string tooltip2 Tooltip
for the
second
button.

ctrlbutton2
provides two
buttons in one
line. For each
button a function
must be
assigned, which
is called
whenever the
corresponding
button has been
pressed. This is
done by
assigning the
name of the
function to the
proc[n] element
of a ctr lbutton
variable. The
function set must
be of the type

void
function().

The too ltip
members hold
the tooltip for the
buttons, which is
shown when the
user holds the
mouse over a
button for some
seconds.

»Description
»Example 1
»Example 2
»Example 3

MADRIX 2 Script Help and Manual194

© 2014 inoage GmbH

Structure Entries GUI Element/
Description

ctrlbutton3 string label1 The
label for
the first
button.

string proc1 Function
handler
for the
first
button.

string label2 Label
for the
second
button.

string proc2 Function
handler
for the
second
button.

string label3 Label
for the
third
button.

string proc3 Function
handler
for the
third
button.

string tooltip1 Tooltip
for the
first
button.

string tooltip2 Tooltip
for the
second
button.

string tooltip3 Tooltip
for the
third
button.

ctrlbutton3
provides three
buttons in one
line. For each
button a function
must be
assigned, which
is called
whenever the
corresponding
button has been
pressed. This is
done by
assigning the
name of the
function to the
proc[n] element
of a ctr lbutton
variable. The
function set must
be of the type

void
function().

The too ltip
members hold
the tooltip for
each button,
which are shown
when the user
holds the mouse
over a button for
some seconds.

»Description
»Example 1
»Example 2
»Example 3

MAS Script Effect 195

© 2014 inoage GmbH

Structure Entries GUI Element/
Description

ctrlbutton4 string label1 The
label for
the first
button.

string proc1 Function
handler
for the
first
button.

string label2 Label
for the
second
button.

string proc2 Function
handler
for the
second
button.

string label3 Label
for the
third
button.

string proc3 Function
handler
for the
third
button.

string label4 Label
for the
fourth
button.

string proc4 Function
handler
for the
fourth
button.

string tooltip1 Tooltip
for the
first
button.

string tooltip2 Tooltip
for the
second
button.

string tooltip3 Tooltip
for the
third
button.

string tooltip4 Tooltip
for the
fourth
button.

ctrlbutton4
provides four
buttons in one
line. For each
button a function
must be
assigned, which
is called
whenever the
corresponding
button has been
pressed. This is
done by
assigning the
name of the
function to the
proc[n] element
of a ctr lbutton
variable. The
function set must

be of type void
function().

The too ltip
members hold
the tooltip for
each button,
which are shown
when the user
holds the mouse
over a button for
some seconds.

»Description
»Example 1
»Example 2
»Example 3

MADRIX 2 Script Help and Manual196

© 2014 inoage GmbH

Structure Entries GUI Element/
Description

ctrlcolor string label The
label for
the
element
.

color value The
value
set by
the
element
.

ctr lco lo r provides
a color input
control with the
well-known Color
Picker and five
edit fields to
enter the red,
green, blue,
white and alpha
values.

The alpha value
will not be
provided/set by
the Color Picker.

»Example

ctrledit string label The
label for
the
element
.

int align Alignme
nt of
the edit
field.

string value The text
which
has
been
entered
in the
edit
field

string tooltip Tooltip
for the
edit
control.

ctr led it provides
an edit control
which allows to
enter a text.

The variable
a lign can be set
to one of the
following values:

EDIT_ALIGN_
LEFT,

EDIT_ALIGN_
CENTER,
or

EDIT_ALIGN_
RIGHT.

»Example

MAS Script Effect 197

© 2014 inoage GmbH

Structure Entries GUI Element/
Description

ctrledit2 string label The
label for
the
element
.

int align Alignme
nt of
the edit
fields

string value1 The first
value.

string value2 The
second
value.

string tooltip1 Tooltip
for the
first edit
control.

string tooltip2 Tooltip
for the
second
edit
control.

ctr led it2 provides
two edit controls
in one line to
enter text.

The variable
a lign can be set
to one of the
following values:

EDIT_ALIGN_
LEFT,

EDIT_ALIGN_
CENTER,
or

EDIT_ALIGN_
RIGHT.

Example: see
ctrledit4

ctrledit3 string label The
label for
the
element
.

int align Alignme
nt of
the edit
fields

string value1 The first
value.

string value2 The
second
value.

string value3 The
third
value.

string tooltip1 Tooltip
for the
first edit
control.

string tooltip2 Tooltip
for the
second
edit
control.

string tooltip3 Tooltip
for the
third
edit
control.

ctr led it3 provides
three edit
controls in one
line to enter
text.

The variable
a lign can be set
to one of the
following values:

EDIT_ALIGN_
LEFT,

EDIT_ALIGN_
CENTER,
or

EDIT_ALIGN_
RIGHT.

Example: see
ctrledit4

MADRIX 2 Script Help and Manual198

© 2014 inoage GmbH

Structure Entries GUI Element/
Description

ctrledit4 string label The
label for
the
element
.

int align Alignme
nt of
the edit
fields.

string value1 The first
value.

string value2 The
second
value.

string value3 The
third
value.

string value4 The
fourth
value.

string tooltip1 Tooltip
for the
first edit
control.

string tooltip2 Tooltip
for the
second
edit
control.

string tooltip3 Tooltip
for the
third
edit
control.

string tooltip4 Tooltip
for the
fourth
edit
control.

ctr led it4 provides
four edit controls
in one line to
enter text.

The variable
a lign can be set
to one of the
following values:

EDIT_ALIGN_
LEFT,

EDIT_ALIGN_
CENTER,
or

EDIT_ALIGN_
RIGHT.

»Example

MAS Script Effect 199

© 2014 inoage GmbH

Structure Entries GUI Element/
Description

ctrlslider string label The
label for
the
element

int rangeMi
n

The
minimu
m value
the
slider
provide
s. This
value
must be
greater
than or
equal to
0.

int value The
start
value
set by
the
slider.

int rangeM
ax

The
maximu
m value
the
slider
provide
s. This
value
must be
greater
than the
minimu
m
value.

string tooltip Holds
the
tooltip
for the
slider.

ctr ls lide r
provides a slider
with a predefined
range. Like
shown in

MADRIX, a
slider is
represented by
an edit control to
enter a value as
well as a slider
control.

You can set a
range for the
slider. The
minimum value (
rangeMin) has to
be greater or
equal to 0, while
the maximum
value (rangeMax
) must be
greater than the
minimum value.
If va lue itself is
set to a value
outside the
range, it is
automatically set
to the minimum
or maximum
value.

The too ltip is
shown when the
user leaves the
mouse over the
slider for some
seconds.

»Example

MADRIX 2 Script Help and Manual200

© 2014 inoage GmbH

Structure Entries GUI Element/
Description

ctrlcolortable string label Label of
the
button.

color[] value A field
of
values
which
holds
the
entries
of the
color
table.

string tooltip The
tooltip
for the
button
to open
the
color
table.

ctr lco lo rtable
provides a color
table dialog to
set a number of
colors.
On the GUI of
the effect, a
button is
provided to open
the color table
dialog.
The label
description is
used to mark the
button.

The too ltip is
shown when the
user holds the
mouse over the
button that opens
the color table
for some
seconds.

»Example

Retrieving Values From GUI Elements

In order to receive values from a GUI element, it is simply necessary to read the appropriate value

from the corresponding variable. The following example demonstrates that:

@author="";
@version="";
@description="";

ctrlcolor col = {"Color",AQUA}; //create color control
ctrlslider chgB = {"Fade", 0, 5, 150, "The value used to dim the lines"};
//create slider

void InitEffect()
{
}

void RenderEffect()
{
 //create a color structure for ChangeBrightness with the value set
 //set by the slider
 color chg = {-chgB.value, -chgB.value, -chgB.value, -chgB.value, -chgB.value};
 ChangeBrightness(chg);

 float f = frandom();

MAS Script Effect 201

© 2014 inoage GmbH

 //draw a line with the color set by the color control
 DrawVectorLine(col.value, f, 0.0, f, 1.0);
}

(Description)

Explanation:

This exemplary effect randomly draws lines onto the matrix and a fade out is added.

First, one color and one slider control are created in addition to the standard speed control. The

color control is used to set the color of the lines. The slider is used to determine the fading time.

In the function RenderEffec t, first, the variable c hg of the type c olor is created. It is initialized

using the negative value of the slider control. Then, ChangeBrightness is called in order to fade

out the current content of the matrix.

Finally, a line is drawn using the color value of the color control.

Setting Values Of GUI Elements

Just as it is possible to read the value, description, or range of a GUI element, it is also possible to

set those values. In this way, it is possible to change the range of a slider, the text of an edit, or

even their descriptions. You just have to set the corresponding value of the appropriate variable.

Here is an example:

@author="";
@version="";
@description="";

ctrlcolor col = {"Color", FUCHSIA};
ctrlslider t = {"Fade", 0, 5, 10};

void InitEffect()
{

}

void RenderEffect()
{
 col.value.a += t.value; //count up alpha value
 if(col.value.a > 255) //if necessary reset it
 col.value.a = 0;

 Clear(col.value); //clear matrix
}

MADRIX 2 Script Help and Manual202

© 2014 inoage GmbH

Explanation:

In this example the matrix is cleared with a predefined color and the alpha constantly changes in

order to render the effect more and more transparent. A color control is created to change the

color in use and a slider allows users to define how fast the color becomes transparent. When the

color is fully transparent, it is reset to no transparency at all. In order to accomplish this effect,

the script continually increases the alpha value set by the color control. You will see how the

alpha value counts up by each frame and is reset to 0, after it has reached the maximum value of

255.

Using Buttons

Buttons are created like any other GUI element by declaring a global variable of one of the

c t r lbut ton elements. In order to use a button, it is necessary to assign a function which is called

when the button has been pressed. Those functions must be of the following type:

void <function name>()

In order to assign such a handler function, the name of the according function must be assigned

to the proc -element of the according variable. In theory it could look like this:

ctrlbutton btn;

void InitEffect()
{
 btn.proc = "OnBtn";
 btn.tooltip="A button";
}

void OnBtn()
{
 do something after button was pressed
}

If the assigned function does not exist or does not have the correct return type or parameter list,

a warning is displayed in the Script output window of the Script Editor.

(Description)

MAS Script Effect 203

© 2014 inoage GmbH

Examples

Button Example 1 (c trlbutton)

The following example creates four buttons. Pressing a button will activate the color indicated by

the button (Red, Green, Blue, or White).

@scriptname="ColorTestWithButton";
@author="jky info@madrix.com";
@version="v1.0-2010/03/31";
@description="Create buttons that set the color of the matrix";

ctrlbutton ButtonRed = {"Red", "OnRed"};
ctrlbutton ButtonGreen= {"Green", "OnGreen"};
ctrlbutton ButtonBlue = {"Blue", "OnBlue"};
ctrlbutton ButtonWhite= {"White", "OnWhite"};

void InitEffect()
{
 ButtonRed.tooltip= "Press here to set color red";
 ButtonGreen.tooltip="Press here to set color green";
 ButtonBlue.tooltip= "Press here to set color blue";
 ButtonWhite.tooltip="Press here to set color white";
 Clear();
}

void RenderEffect()
{
 // do noting
}

void MatrixSizeChanged()
{
 InitEffect();
}

void OnRed()
{
 Clear(RED);
}

void OnGreen()
{
 Clear(GREEN);
}
void OnBlue()
{
 Clear(BLUE);
}

void OnWhite()
{
 Clear(WHITE);

MADRIX 2 Script Help and Manual204

© 2014 inoage GmbH

}

(Description)

Button Example 2 (c trlbutton)

The following example provides two buttons. By pressing the first button, blinking is started and

stopped. Pressing the second button selects another color. This example changes the label and

the handler function of the first button.

@scriptname="";
@author="";
@version="";
@description="";

ctrlbutton g_btnMode = {"Mode: blink", "OnBlinkOff",
"Enable or disable blinking mode"};
ctrlbutton g_btnColor= {"Change Color", "OnColor", "Select a new color"};

const int MODE_BLINK = 0;
const int MODE_STOP = 1;

int g_mode;
int g_counter;
color g_color = RED;

void InitEffect()
{

}

void RenderEffect()
{
 if(g_mode == MODE_BLINK)
 {
 if(g_counter++ == 10)
 {
 Clear(g_color);
 g_counter = 0;
 }
 else if(g_counter++ == 5)
 {
 Clear();
 }
 }
 else
 {
 Clear(g_color);
 }
}

MAS Script Effect 205

© 2014 inoage GmbH

void OnColor()
{
 g_color.r = random(0, 255);
 g_color.g = random(0, 255);
 g_color.b = random(0, 255);
 g_color.w = random(0, 255);
}

void OnBlinkOff()
{
 g_mode = MODE_STOP;
 g_btnMode.label = "Blinking Off";
 g_btnMode.proc = "OnBlinkOn";
 g_btnMode.tooltip = "Enable blinking mode";
 WriteText("Blink disabled");
}

void OnBlinkOn()
{
 g_mode = MODE_BLINK;
 g_btnMode.label = "Blinking On";
 g_btnMode.proc = "OnBlinkOff";
 g_btnMode.tooltip = "Disable blinking mode";
 WriteText("Blinking enabled");
}

(Description)

Button Example 3 (c trlbutton)

The following example draws a continuing circles an provides 4 rows, each containing 1, 2, 3, or 4

buttons. The buttons are labeled with a color. Press the according button and the displayed

circles will change their color.

@scriptname="buttons";
@author="jky";
@version="1.0";
@description="view to use button 1-4";

int height=0;
int width=0;
int i;
color col=WHITE;
ctrlbutton Button1 ={"Red","OnRed","set red color"};
ctrlbutton2 Button2 ={"Red","OnRed","Green","OnGreen","set red color", "set green color"};
ctrlbutton3 Button3 ={"Red","OnRed","Green","OnGreen","Blue","OnBlue","set red color", "set green color","set blue color"};
ctrlbutton4 Button4 ={"Red","OnRed","Green","OnGreen","Blue","OnBlue","White","OnWhite","set red color", "set green color","set blue color","set white color"};

void InitEffect()
{

MADRIX 2 Script Help and Manual206

© 2014 inoage GmbH

 height = GetMatrixHeight();
width = GetMatrixWidth();
Clear();
i=0;
SetBpm(100);

}

void RenderEffect()
{
i++;
if(i>width || i>height)
{

i=0;
Clear();

}

DrawPixelCircle(col, width/2-i, height/2-i, i*2,i*2);
}

void MatrixSizeChanged()
{
InitEffect();

}

void OnRed()
{
col=RED;

}

void OnGreen()
{
col=GREEN;

}

void OnBlue()
{
col=BLUE;

}

void OnWhite()
{
col=WHITE;

}

(Description)

MAS Script Effect 207

© 2014 inoage GmbH

Color Table (c trlco lortable)

The following example clears the matrix with several predefined colors. The effect provides a color

table to set up these colors. This example shows how to initialize and to use a color table within a

script.

@author="";
@version="";
@description="";

ctrlcolortable col = {"Color Table", {RED, GREEN, {255, 255, 128}, FUCHSIA},
"Colors used to fill the matrix"};

void InitEffect()
{
 SetBpm(60);
}

void RenderEffect()
{
 if(col.value.length > 0)
 {
 Clear(col.value[random(0, col.value.length - 1)]);
 }
}

(Description)

Edit Field (c trledit)

The following example clears the matrix with the color white. It also creates 1 edit fields to enter

the color values for the red color channel. You can enter different values than 255, which is the

default value of the edit field in this script. The green and blue color channel are automatically set

to 255.

@scriptname="ctrledit1 sample";
@author="jky";
@version="MADRIX 2.10";
@description="color edit via script gui";

color col=WHITE;
// create 1x edit
ctrledit editColor={"Color",EDIT_ALIGN_RIGHT,"255","color red"};

void InitEffect()
{
}

MADRIX 2 Script Help and Manual208

© 2014 inoage GmbH

void RenderEffect()
{
 col.r=(int)editColor.value;// value1 to color red via cast (int)
 Clear(col);// Set color to complete matrix
}

void MatrixSizeChanged()
{
InitEffect();

}

(Description)

Edit Fields (c trledit4)

The following example clears the matrix with the color white. It also creates 4 edit fields to enter

color values for the red, green, blue, and white color channel. You can enter different values than

255, which is the default value of the edit fields in this script.

@scriptname="ctrledit4 sample";
@author="jky";
@version="MADRIX 2.10";
@description="color edit via script gui";

color col=WHITE;
// create 4x edit
ctrledit4 editColor={"Color",EDIT_ALIGN_RIGHT,"255","255","255","255",
"color red","color green","color blue","color white"};

void InitEffect()
{
}

void RenderEffect()
{
 col.r=(int)editColor.value1;// value1 to color red via cast (int)
 col.g=(int)editColor.value2;// value2 to color green via cast (int)
 col.b=(int)editColor.value3;// value3 to color blue via cast (int)
 col.w=(int)editColor.value4;// value4 to color white via cast (int)
 Clear(col);// Set color to complete matrix

}

void MatrixSizeChanged()
{
InitEffect();

}

(Description)

MAS Script Effect 209

© 2014 inoage GmbH

4.4 Controlling The Tempo

Since the introduction of BPM for setting the speed of an effect, it is possible to have very fast

effects in MADRIX. Furthermore, using the Speed Master it is possible to increase the speed even

more. And some effects can even be played backwards. Several static effects, like SCE

ColorScroll, may also be controlled via their frame ID. It enables the user to "scroll" the effect to a

well defined "position".

All those things can also be done with an effect written in MADRIX Script. But the script author

should take some precautions. This chapter describes what is necessary in order to have a script

that can be run very fast or even backwards due to the Speed Master. A deeper insight into the

topic F ram eId is provided as well.

All the relationships will be illustrated with the help of a simple script, which moves a rectangle

from left to right, or backwards.

4.4.1 Increasing The Speed Of Effects

BPM vs. FPS

The speed of the MAS Script Effect is controlled by the BPM slider (and edit field) which has a

range between 0 and 9999. With regard to this, 0 implies that the effect is stopped and will not be

rendered any more. Transferred to a script, it means that RenderEffec t is not called anymore.

Consequently, the effect stops automatically. 9999 is the maximum value and would mean that

the effect runs with round about 166 FPS. Here is how BPM and FPS values are related to each

other:

BPM = FPS * 60
FPS = BPM / 60

MADRIX 2 Script Help and Manual210

© 2014 inoage GmbH

Since DMX maximally supports a data frequency of 43Hz (or FPS), MADRIX renders effects with a

maximum of 50Hz (or FPS), which equals 3000 BPM. Any render frequency that is higher would not

make any sense. That means that a script is not called more often than 50 times per second, no

matter if the BPM slider shows 3000 or 9000 BPM.

To illustrate this fact, copy and paste the following script. It makes a rectangle move from the left

to the right side of the matrix.

int g_pos[];
int g_rectSize[] = {4, 4}; //size of the rect

void MatrixSizeChanged()
{
 g_pos[1] = GetMatrixHeight() / 2 - g_rectSize[1] / 2;;
}

void InitEffect()
{
 MatrixSizeChanged();
}

void RenderEffect()
{
 Clear();
 FillPixelRect(WHITE, g_pos[0], g_pos[1], g_rectSize[0], g_rectSize[1]);
 //move the rectangle
 g_pos[0] += 1;
 //check if the rectangle has left the matrix and set it back
 if(g_pos[0] > GetMatrixWidth() + g_rectSize[0])
 g_pos[0] = -g_rectSize[0];
}

Subsequently, set the matrix to a width of 50. Use the BPM slider to increase or decrease the

speed. You should be able to recognize that the rectangle always needs one second to move

across the whole matrix, whether you select 3000 BPM or 9000 BPM. This is due to two facts.

First, the rectangle is moved exactly one pixel per call. Second, the maximal render frequency of

an effect, and therefore also for a script, is 50 FPS. So, the rectangle will maximally be moved 50

times per second by exactly one pixel.

Please note: A script is called a maximum of 50 times per second.

MAS Script Effect 211

© 2014 inoage GmbH

Creating Faster Effects

Now we know that we can not increase the maximal render frequency. If we cannot render the

rectangle more often, we need to move the rectangle a little bit more than one pixel per call. The

solution is fram esteps, a value which can be determined by the function:

float GetFrameSteps()

This function tells us, how many frames would have been left since the last call of our

RenderEffec t function. E.g. if we have a speed of 6000 BPM, GetF ram eSteps results in a value of

2.0 (6000 BPM/ 2.0 = 3000 BPM or 50Hz). To use this in our script, we need to change one line:

g_pos[0] += 1;

to

g_pos[0] += (int)GetFrameSteps();

In the end, the script looks like this:

int g_pos[];
int g_rectSize[] = {4, 4}; //size of the rect

void MatrixSizeChanged()
{
 g_pos[1] = GetMatrixHeight() / 2 - g_rectSize[1] / 2;;
}

void InitEffect()
{
 MatrixSizeChanged();
}

void RenderEffect()
{
 Clear();
 FillPixelRect(WHITE, g_pos[0], g_pos[1], g_rectSize[0], g_rectSize[1]);

 //move the rectangle
 g_pos[0] += (int)GetFrameSteps();
 //check if the rectangle has left the matrix and set it to the other side
 if(g_pos[0] > GetMatrixWidth() + g_rectSize[0])
 g_pos[0] = -g_rectSize[0];
 else if(g_pos[0] < -g_rectSize[0])
 g_pos[0] = GetMatrixWidth()+g_rectSize[0];
}

Explanation:

MADRIX 2 Script Help and Manual212

© 2014 inoage GmbH

This script is now able to play much faster than 3000 BPM and you can increase the speed even

more using the Speed Master. Furthermore, if you set the Speed Master to its negative range of

values, it will play backwards. This is due to the fact that if the Speed Master is negative,

fram esteps is also negative. Since we are making direct use of F ram eSteps, the position will be

decreased automatically.

Due to this fact, the script has not only to check if the rectangle has left the matrix to the right

side (which we have done in the other script, too). It also needs to be checked if the rectangle

has left the matrix to the left side. And if so, the rectangle needs to be set to the other side. This

is done with the help of the last two lines that were added to the script.

Now we have a script which is able to run very fast and which can be controlled by the Speed

Master as well.

Using Floating-point Values

Up to this point, GetF ram eSteps always delivers integer values, like 1.0, 2.0, 3.0, and so on. The

minimal value was 1.0. It is also possible, and sometimes necessary, to have values inbetween,

like 1.5 for example. Especially if a fixed render frequency is used, this is absolutely necessary as

you will see later on. Some effects require floating point values, or else the effect will not be

rendered smoothly. You can enable floating point frame steps with the function:

void SetUseFloatFrames(int enable)

Add this line to the following script and start it. Now, if you move the BPM slider you will see that

GetF ram eSteps delivers values like 2.5, etc.

void InitEffect()
{
 SetUseFloatFrames(true);
}

void RenderEffect()
{
 WriteText((string)GetFrameSteps());
}

MAS Script Effect 213

© 2014 inoage GmbH

Note: Even if a script enables floating point frame steps, after recompiling and starting another

script it is disabled again.

4.4.2 Controlling A Script Via Frame ID

Using The Frame ID

The Frame ID is a special feature that is only supported by some effects. These effects are:

SCE Color Change

SCE Color Scroll

SCE Plasma

SCE Radial

SCE Ticker

SCE Wave

MAS Script Effect

Using the Frame ID makes sense when the effect generates a sequence of visuals, which will

repeat itself after a while. A user of MADRIX could forward or rewind effects. Hence, the Frame ID

influences the position (and/or speed) of the listed effects. As mentioned above, this can also be

used for effects, which are written as a Script in the MAS Script Effect.

You will not have access to the individual Frame IDs generated by MADRIX. Instead, you can

simply add values to the current Frame ID, which is unkown to you.

Example:

Let's assume the current Frame ID is 0. Add 50 frames and the new result is 50.

Let's assume further that another Frame ID is 2500. Add 50 and the new result is 2550.

In both cases, adding 50 will have the same result: the position is skipped by 50.

For our script from the last chapter, the sequence of pictures was one complete movement of the

rectangle over the whole matrix. Now, imagine an effect which clears/fills the matrix with different

colors defined by a color table. This effect could use the Frame ID to index the color table in order

to determine which color to use next.

MADRIX 2 Script Help and Manual214

© 2014 inoage GmbH

In order to use Frame IDs, we need to know the number of frames an effect produces that will be

repeated. The next step is to tell MADRIX this number of frames. MADRIX needs this number to be

able to generate the Frame IDs (including 0), but excluding the given number of those frames. The

last step is to determine the current Frame ID when the effect is rendered in order to draw the

appropriate picture. The number of frames we need is set and received by:

void SetFrameCount(float framecount)

float GetFrameCount()

The current Frame ID can be retrieved by a call of:

float GetFrameId()

And here is our script using Frame ID. As you can see, it is much simpler and shorter since we do

not need to check if the rectangle has left the matrix. Furthermore, the rectangle will be moved

almost automatically by MADRIX.

int g_ypos;
int g_rectSize[] = {4, 4}; //size of the rectangle

void MatrixSizeChanged()
{
 g_ypos = GetMatrixHeight() / 2 - g_rectSize[1] / 2; //the number of frames we have
 SetFrameCount((float)(GetMatrixWidth() + 2 * g_rectSize[0]));
}

void InitEffect()
{
 MatrixSizeChanged();
}

void RenderEffect()
{
 Clear();
 FillPixelRect(WHITE, (int)GetFrameId()-rectSize[0], g_ypos, g_rectSize[0], g_rectSize[1]);
}

Explanation:

This script uses the Frame ID as position x for the rectangle.

First, we need to determine and set the number of frames we produce. This is done in the

function Mat r ixSizeChanged. Since we want to move the rectangle over the whole matrix and the

rectangle shall move in and out of it, we calculate our number of frames as:

frame count = width of matrix + 2 * width of rectangle

MAS Script Effect 215

© 2014 inoage GmbH

In order to let it move into the matrix, we subtract the width of the rectangle from the Frame ID

so that position x is:

position x = GetFrameId() - width of the cube

This is done in the last line of the script.

Now, this script can be controlled per Frame ID. Since the calculation of the Frame ID includes the

current Speed Master and the set speed, this script is able to run for- and backwards and very

fast.

Setting The Frame ID

It is also possible to set a new Frame ID using the following function.

void SetFrameId(float id)

This may be useful to have more control over a running script.

Another Way To Use the Frame ID

The following script fills the matrix with the colors red, green, and blue. It uses the Frame ID to

index the color table in order to determine which color should be used to fill the matrix. Simply run

this script and move the Speed Master into both directions. You will be able to see that the order

of the colors will change. You may see that the effect runs backwards if the Speed Master is set

to negative values.

color g_colTab[] = {
 {255, 0, 0, 0}, //red
 { 0,255,0, 0}, //green
 { 0, 0,255,0} //blue
};

void InitEffect()
{
 SetFrameCount((float)(g_colTab.length));
 SetBpm(30);
}

void RenderEffect()
{
 Clear(g_colTab[(int)GetFrameId()]);
}

MADRIX 2 Script Help and Manual216

© 2014 inoage GmbH

4.4.3 Using A Fixed Render Frequency

Up to now, we know that the maximal render frequency of an effect is 50 FPS, which translates to

3000 BPM. We also know how to manage that a script can act like it would run much faster. The

last thing we want to introduce here is the possibility to have a fixed render frequency.

Imagine a script that needs a lot of processing time; much too much to render it at 50 FPS. You

may want to decrease the render frequency while the user is still able to set the speed of the

effect using the BPM slider or the Speed Master. We have done this before, but with the

difference that MADRIX did set the maximal fixed render frequency.

We can tell MADRIX to render an effect with a fixed frame rate, for example 1500 BPM (or 25

FPS), using the function:

void SetFixedFrameRate(int bpm, int enable)

This function sets the render frequency to the given value in bpm if enable is set to t rue. If

enable is fa lse, the bpm value is ignored and the usage of a fixed render frequency is disabled

again. The parameter bpm may have a value of 1 to 3000. If the render frequency is set to a fixed

rate, you will need to use the function fram esteps value to calculate the effect. If this function

is not used, it will be rendered with the speed the user has set. The following two examples will

explain this in more detail.

To demonstrate this effect, the first script of this chapter is used as a basis. The line

SetF ixedFram eRate(1500, t rue) simply needs to be added to InitEffec t . Here is the complete

source code:

int g_pos[];
int g_rectSize[] = {4, 4}; //size of the rect

void MatrixSizeChanged()
{
 g_pos[1] = GetMatrixHeight() / 2 - g_rectSize[1] / 2;;
}

void InitEffect()
{
 MatrixSizeChanged();
 SetFixedFrameRate(1500, true);
}

void RenderEffect()
{

MAS Script Effect 217

© 2014 inoage GmbH

 Clear();
 FillPixelRect(WHITE, g_pos[0], g_pos[1], g_rectSize[0], g_rectSize[1]);
 //move the rectangle
 g_pos[0] += 1;
 //check if the rectangle has left the matrix and set it back
 if(g_pos[0] > GetMatrixWidth() + g_rectSize[0])
 g_pos[0] = -g_rectSize[0];
}

Please load and start the script using the MAS Script effect. While it is running, try to move the

BPM slider or the Speed Master and you will see that nothing happens. The rectangle moves

exactly with 25 FPS from the left to the right side of the matrix. In order to get a faster or slower

movement of the rectangle, two things are necessary: First, the function fram esteps must be

used to calculate the movement. Second, the position values need be changed from integer to

float since the frame steps will be given as floating point values. Here is the new example:

float g_pos[];
int g_rectSize[] = {4, 4}; //size of the rect

void MatrixSizeChanged()
{
 g_pos[1] = (float)(GetMatrixHeight() / 2 - g_rectSize[1] / 2);
}

void InitEffect()
{
 MatrixSizeChanged();
 SetFixedFrameRate(1500, true);
}

void RenderEffect()
{
 Clear();
 FillPixelRect(WHITE, (int)g_pos[0], (int)g_pos[1], g_rectSize[0], g_rectSize[1]);

 //move the rectangle
 g_pos[0] += GetFrameSteps();
 //check if the rectangle has left the matrix and set it to the other side
 if((int)g_pos[0] > GetMatrixWidth() + g_rectSize[0])
 g_pos[0] = (float)-g_rectSize[0];
 else if((int)g_pos[0] < -g_rectSize[0])
 g_pos[0] = (float)(GetMatrixWidth()+g_rectSize[0]);
}

In the previous examples, GetF ram eSteps() always resulted in integer values like 1.0, 2.0, etc.

The minimum value was 1.0. Now the framesteps are given as floating point values and may also

result in 0.5 or 1.73. SetF ixedFram eRate requires float ing point values to work accurately.

Therefore, if SetF ixedFram eRate is enabled, floating point frames will be enabled as well.

Moreover, it is not possible to disable floating point frames when a fixed frame rate is used.

MADRIX 2 Script Help and Manual218

© 2014 inoage GmbH

Please note: Even though a script may use a fixed render frequency, after recompiling and

starting another script it will be disabled again.

Part

V

MADRIX 2 Script Help and Manual220

© 2014 inoage GmbH

5 Macros For Effects

5.1 Overview

Introduction

Macros can be used to manipulate its result or to change its settings. They are bound to the

particular effect. Macros are written in MADRIX Script. The main difference between a macro and

a script of the MAS Script effect are the functions MADRIX calls. In addition, each MADRIX effect

has its own functions that can be called from a macro to control it.

Macros are stored as a part of the effect. This means they are part of a stored effect or setup.

Moreover, it is possible to save macros as separate files. The file extension of a macro is * .m m s.

The extension of a compiled macro is * .m c m.

Macros are used to manipulate the result of an effect. A macro is called before and after an effect

has been rendered.

To run a macro for an effect, please select the 'Macro' button in the effect area.

Functions Called By MADRIX

The following functions are called by MADRIX for each effect and can be implemented by a macro

in order to react to different events:

void InitEffect()

void PreRenderEffect

void PostRenderEffect()

Macros For Effects 221

© 2014 inoage GmbH

void MatrixSizeChanged()

I nitEffec t

(automatically included in a new macro)

InitEffec t is called by MADRIX whenever the script needs to be initialized. This is the case after

compiling and starting a new macro or when the user pressed the "Start" button of the Script

Editor. A macro can assume that any global variable is initialized with 0 and that any global field is

empty as long as it has not been initialized with any value.

PreRenderEffec t

(automatically included in a new macro)

PreRenderEffec t is called before the effect is going to be rendered. Changes done here affect the

current frame, but may be overwritten by the effect itself. In most times, this function may be

used to change the mapping of an effect, for example to move it around the matrix.

PostRenderEffec t

(automatically included in a new macro)

This function is called immediately after the effect has been rendered. Here, the result of the

effect can be manipulated. You could use a grey filter on it, for example.

Please note: The matrix, which the macro manipulates, is the same matrix that the effect uses to

calculate its own effect. The effect may rely on the output being the input for the next frame

with undefined behavior.

Please also note: Mapping operations done in PostRenderEffec t will effect the next frame, but

not the current one. To control the current frame, please use PreRenderEffec t.

MADRIX 2 Script Help and Manual222

© 2014 inoage GmbH

MatrixSizeChanged

(automatically included in a new macro)

Mat ixSizeChanged is called after the size of the matrix has been changed. This may be due to a

change to the matrix settings or because a new map setting was set, e.g. caused by the call of a

map function.

Standard Outline

When you open the Effect Macro Editor, the empty standard macro will look like this:

@scriptname="";
@author="";
@version="";
@description="";

void InitEffect()
{

}

void PreRenderEffect()
{

}

void PostRenderEffect()
{

}

void MatrixSizeChanged()
{
InitEffect();

}

Macros For Effects 223

© 2014 inoage GmbH

5.2 Functions

Specific Resources

Functions called by MADRIX
Macros for Effects: Available Functions

Setting and Getting the Current Speed
Using the Frame ID

SCE - Static Light Effects
S2L - Sound2Light Effects
M2L - Music2Light

General Resources

Keyword Search
List Of Functions (Alphabetical Order)
List Of Functions (Grouped)
List Of Global Variables and Constants
List Of Operations
List Of Structures
Table Of Frequencies
Table Of Notes

Available Functions

Standard Functions

It is useful to consult the List of Functions (Alphabetical Order) for non-specific functions.

Please note: The functions GetSpeed and SetSpeed are not available for every single effect.

MADRIX 2 Script Help and Manual224

© 2014 inoage GmbH

Effect-Specific Functions Depending On The Effect

In addition to the standard functions of MADRIX Script, there are other functions available that

are special to each effect.

Because of the quantity of different types of effects in MADRIX, each one has its own settings.

Therefore, for each effect there are special commands available. Those commands are not working

in other effects and a macro which uses such commands cannot be compiled in another effect. An

example is the function SetT ext for the SCE Ticker effect. This function specifies the text of the

Ticker. Since no other effect shows text, the function is not available for other effects.

The functions available for the each different effect and their meaning is described in the chapters

below. There is one chapter for each effect (SCE Static Color Effects, S2L Sound2Light Effects,

M2L Music2Light Effects).

Setting And Getting The Current Speed Of An Effect

Several effects allow to set their speed using the BPM slider. Examples for such effects include

SCE Plasma or the S2L EQ effect. Until version 2.5 of MADRIX those effects had a speed-slider

working with Hz and a range between 1 to 50 Hz. Since version 2.5 of MADRIX those effects have

a BPM slider setting the speed of an effect using beats per minute with a range from 0 to 9999

BPM.

The macros of those effects, which support setting the speed, now have two additional functions:

void SetBpm(int bpm)

int GetBpm()

Setting BPM to 0 means that the effect will be stopped immediately. Furthermore, values of the

function SetSpeed now range from 0 to 166, which represents a range of 0 to almost 9999 BPM.

Macros For Effects 225

© 2014 inoage GmbH

Using The Frame ID

There are a lot of effects which use an internal frame ID to have more control. For example, the

SCE Color Scroll effect uses the frame ID to control the speed of scrolling. This does not make

sense for all effects. However, for each effect it is possible to set and get the current frame ID

and frame count. The frame count identifies the maximal frame ID used by the effect. This may be

utilized to speed up the effect. For example, the following source code increases the speed of an

effect that is controlled by the frame ID.

void PreRenderEffect()
{
 SetFrameId(GetFrameId() + 2);
}

However, it is not possible to set the frame count by a macro; except for a macro of the MAS

Script effect.

Applying Filter Effects (FX)

You may quickly change the visual outcome of Effects using Filters (also called Filter Effects, FX).

void SetFilter(int filter)

int GetFilter()

Valid values for filter are the global variables »Filters . You can also find further explanations about

the various filter types in this chapter.

Setting Blind Mode Or Solo Mode

void SetSolo(int)

int GetSolo()

void SetBlind(int)

int GetBlind()

MADRIX 2 Script Help and Manual226

© 2014 inoage GmbH

Blind mode and solo mode are two options available for each layer. Blind mode will deactivate the

current layer, while solo mode will only show this layer while disabling all other layers.

Valid values for int are 0 (Off) or 1 (On).

5.3 SCE Static Color Effects

5.3.1 SCE Color

For the SCE Color effect it is possible to set the speed and the color to display.

Macros For Effects 227

© 2014 inoage GmbH

Functions Provided By SCE Color

Getting And Setting The Speed

The speed is to be set in BPM with a range of 0 to 9999 BPM. The following functions are

available:

void SetBpm(int bpm)

int GetBpm()

If bpm is lower than 0, it is reduced to 0 which means that the effect will be stopped. If bpm is

higher than 9999, it is lowered to 9999.

Getting And Setting The Speed (Deprecated Functions)

The speed of the effect can be set in the range of 0 to 166 frames per seconds. The following

functions are available:

void SetSpeed(int fps)

int GetSpeed()

If FPS is lower than 0 or greater than 166, then a warning is written to the Script Editor output.

Additionally, it will be automatically to 0/166 FPS which represents a range of 0 to almost 9999

BPM.

Please note: These functions are deprecated and may be removed in some forthcoming release of

MADRIX. Please use SetBpm and GetBpm instead. Deprecated functions are outdated functions

and should not be used anymore.

Setting And Getting The Color

It is possible to set the color the effect uses with the following function:

void SetColor(color col)

color GetColor()

This Effect uses the Color Picker. Learn more about Using Colors.

MADRIX 2 Script Help and Manual228

© 2014 inoage GmbH

5.3.2 SCE Bitmap

Functions Provided By SCE Bitmap

The following table provides an overview of all functions the effect can use:

Function Description

void SetDirection(int) Sets the movement direction. Allowed are all directions described

by the DIR_ constants. Use DIR_NONE, to stop the image

movement.

int GetDirection() Retrieves the current movement direction. Returns DIR_NONE, if

the movement has been stopped.

int GetPixelImagePositionX() Returns the current absolute x - pixel coordinate of the image.

int GetPixelImagePositionY() Returns the current absolute y - pixel coordinate of the image.

float GetVectorImagePositionX() Returns the current absolute x - coordinate of the image.

float GetVectorImagePositionY() Returns the current absolute y - coordinate of the image.

void SetPixelImagePosition(int x, int y) Sets the position of the image with absolute pixel coordinates.

void SetVectorImagePosition(float x,
float y)

Sets the position of the image using relative coordinates.

int GetPixelImageWidth() Returns the width of the currently displayed image as absolute
pixel value.

int GetPixelImageHeight() Returns the height of the currently displayed image as absolute
pixel value.

float GetVectorImageWidth() Returns the width of the currently displayed image relative to the
settings of the current matrix.

float GetVectorImageHeight() Returns the height of the currently displayed image relative to the
settings of the current matrix.

void SetStretch(int enable) If enable is fa lse, stretching will be disabled, otherwise it will be
enabled.

int GetStretch() Returns true, if stretch is currently enabled, otherwise fa lse.

void SetTile(int enable) Disables tile mode of the bitmap effect if enable is fa lse, otherwise
the tile mode will be enabled.

int GetTile() Returns true if tile mode of the bitmap effect is currently enabled,
otherwise fa lse.

void SetGrey(int enable) Disables grayscale mode if enable is fa lse, otherwise it will be
enabled.

int GetGrey() Returns true if grayscale mode is currently active, otherwise fa lse.

void SetRgbToRgbw(int enable) Disables the RGB-to-RGBW mode if enable is fa lse, otherwise it
will be enabled.

int GetRgbToRgbw() Returns true if RGB-to-RGBW mode is enabled, otherwise fa lse.

void SetBpm(int bpm) Sets the speed for the image movement. The value bpm must be
within a range of 0 to 9999 BPM. E.g. a value of 60 means that the
image moves one pixel per second into the given direction.

Macros For Effects 229

© 2014 inoage GmbH

int GetBpm() Returns the speed for the image movement in BPM.

void SetAnimationSpeed(float multiplier) Sets the animation speed multiplier. See below for further details.

float GetAnimationSpeed() Returns the current animation speed multiplier. See below for
further details.

void SetFilterColor(color col) Sets the filter color for the effect. Please note that the alpha
value of the color structure is not used by this effect.

color GetFilterColor() Returns the current filter color. Please note that the alpha value
is not used and should be ignored.

void SetRotation(int angle) Sets the rotation globally for all images of the image list. It is
possible to rotate the images by multiples of 90°. This function is
equal to the rotation button provided by the GUI of the effect.
Valid values for angle are 0, 90, 180, and 270.

int GetRotation() Returns the current rotation which is set on the effect itself.

int GetImageCount() Returns the number of currently loaded images in the image table.

void SetCurrentImage(int idx) Sets the image that should be displayed next. If idx is out of
range, nothing happens.

int GetCurrentImage() Returns the index of the currently displayed image.

This Effect uses the Color Picker. Learn more about Using Colors.

MADRIX 2 Script Help and Manual230

© 2014 inoage GmbH

Deprecated Functions

Deprecated functions are outdated functions and should not be used anymore.

Function Description

void SetMoveSpeed(float speed) Sets the speed for the image movement. The speed must be given
in frames per second. E.g. 2 means that the image will be moved
2 pixels per second. The available range can be set from 0 to
166. Please note: This function is deprecated and may be
removed in one of the next releases. Use SetBpm instead.

float GetMoveSpeed() Returns the speed for the image movement in frames per second.
Please note: This function is deprecated and may be removed in
one of the next releases. Use GetBpm instead.

Speed Settings Of The Bitmap Effect

The bitmap effect has two independent speed settings implemented. The first one is the

movement speed of the picture moving over the matrix. The second one is the animation speed

used to speed up or slow down the animation.

The following functions specify and retrieve the speed for the picture movement in frames per

second:

void SetBpm(int bpm)

int GetBpm()

The next two functions control the animation speed:

void SetAnimationSpeed(float multiplier)

float GetAnimationSpeed()

The functions do not control the animation speed itself, but work with a multiplier. This means

that if m ulitplier is set to 2 for example, the animation speed is doubled. A m ult iplier of 0.5 is

setting the animation speed to half of the original one.

(Description)

Macros For Effects 231

© 2014 inoage GmbH

Examples

Moving An Image

The following example moves the image or animation back and forth on the matrix.

void InitEffect()
{

}

void PreRenderEffect()
{
 if(GetDirection() == DIR_LEFT)
 {
 if(GetVectorImagePositionX() <= 0.0)
 {
 SetVectorImagePosition(0.0, GetVectorImagePositionY());
 SetDirection(DIR_RIGHT);
 }
 }
 else if(GetDirection() == DIR_RIGHT)
 {
 if(GetVectorImagePositionX() + GetVectorImageWidth() >= 1.0)
 {
 SetVectorImagePosition(1.0 - GetVectorImageWidth(), GetVectorImagePositionY());
 SetDirection(DIR_LEFT);
 }
 }
 else
 {
 SetDirection(DIR_LEFT);
 }

}

void PostRenderEffect()
{

}

Controlling The Animation

The following example stops the animation and selects the images to show.

@scriptname="";
@author="";
@version="";
@description="";

int g_img;

MADRIX 2 Script Help and Manual232

© 2014 inoage GmbH

void InitEffect()
{
 WriteText(GetAnimationSpeed());
 SetAnimationSpeed(0.0);
}

void PreRenderEffect()
{
 SetCurrentImage(g_img);
 g_img = (g_img + 1) % GetImageCount();
}

void PostRenderEffect()
{

}

5.3.3 SCE Bounce

Functions Provided By SCE Bounce

The following table provides an overview over all functions the effect provides:

Function Description

void SetBpm(int bpm) Sets the speed for the movement. bpm must be within a range of
0 to 9999 BPM. E.g. a value of 60 means that it is moved one pixel
per second into the given direction.

int GetBpm() Returns the current speed for the movement in BPM.

void SetObjects(int count) Sets the number of objects.

int GetObjects() Returns the current number of objects.

void SetPoints(int count) Sets the number of points per object. Only line and curve mode
allow more than 1 point per object.

int GetPoints() Returns the current number of points per object.

void SetFadeOut(int value) Sets the fade out value.

int GetFadeOut() Returns the current fade out value.

void SetSize(int size) Sets the size of the shapes. This only works if points per object is
set to 1.

int GetSize() Returns the current size of the shapes.

void SetShape(int shape) Sets the shape to use. One of the defines described below must be
used.

int GetShape() Returns the currently defined shape. See below for further details

void SetCollision(int state) Sets the collision mode to on or off. A value of 1 stands for on and
0 for off.

int GetCollision() Returns the currently used collision mode.

Macros For Effects 233

© 2014 inoage GmbH

void SetColor(int idx, color c) Sets the color at the specified index in the Color Table dialog. If
idx is out of range, nothing happens.

color GetColor(int idx) Returns the color of the specified index in the color table. If the
index is out of range, b lack is returned.

int GetColorCount() Returns the number of colors in the color table.

void AddColor(int idx, color c) Adds another color to the color table at the specified index
position. If the index is lower or equal to 0, the new color is added
to the first position. If the index is greater than the current number
of colors, the new color is added at the end.

void RemoveColor(int idx) Removes the color located at the specified index. If the given
index is out of range, nothing happens. The Color Table of this
effect needs to include at least 1 entry.

This Effect uses the Color Table. Learn more about Using Colors.

Draw Modes

This effect uses various geometrical figures. With the function SetShape it is possible to change

them. The following values can be used as parameter:

Value Description

DRAW_CROSS Selects the cross for drawing.

DRAW_CIRCLE Selects the unfilled circle for drawing.

DRAW_RECT Selects the unfilled rectangle for drawing.

DRAW_STAR Selects the star for drawing.

FILL_CIRCLE Selects the filled circle for drawing.

FILL_RECT Selects the filled rectangle for drawing.

DRAW_LINE Selects the line mode for drawing.

DRAW_CURVE Selects the curve mode for drawing.

DRAW_DIAMOND Selects the diamond for drawing.

FILL_DIAMOND Selects the filled diamond for drawing.

MADRIX 2 Script Help and Manual234

© 2014 inoage GmbH

5.3.4 SCE Color Change

Functions Provided By SCE Color Change

The following table provides an overview of all functions the effect can use:

Function Description

void SetChangeTime(float time) Sets the fade time for the effect in seconds.

float GetChangeTime() Retrieves the fade time of the effect in seconds.

void SetBpm(int bpm) Sets the speed of the color change in BPM. bpm is in the range of
0 to 9999.

int GetBpm() Gets the speed of the effect in BPM.

void SetFade(int enable) Disables fade if enable is false, otherwise it will be enabled. Please
note that this does not affect the effect's frame fade.

int GetFade() Returns true if fade is enabled, otherwise fa lse.

void SetColor(int idx, color c) Sets the color at the specified index in the Color Table dialog. If
idx is out of range, nothing happens.

color GetColor(int idx) Returns the color of the specified index in the color table. If the
index is out of range, b lack is returned.

int GetColorCount() Returns the number of colors in the color table.

void AddColor(int idx, color c) Adds another color to the color table at the specified index
position. If the index is lower or equal to 0, the new color is added
to the first position. If the index is greater than the current number
of colors, the new color is added at the end.

void RemoveColor(int idx) Removes the color located at the specified index. If the given
index is out of range, nothing happens. The Color Table of this
effect needs to include at least 2 entries.

This Effect uses the Color Table. Learn more about Using Colors.

5.3.5 SCE Color Fill

The SCE Color Fill effect provides some functions to set the fill mode, the fill time, the delay time,

and the mix color setting. Settings for the different fill modes cannot be set, yet.

Functions Provided By SCE Color Fill

The following table provides an overview of all functions the effect can use:

Function Description

Macros For Effects 235

© 2014 inoage GmbH

void SetMixColor(int enable) Disables the mix color mode if enable is fa lse, otherwise it will be
enabled.

int GetMixColor() Returns true if the mix color mode is enabled.

void SetFillMode(int mode) Sets the fill mode. The table below describes the valid values for
parameter m ode.

int GetFillMode() Returns the current fill mode. See the table below for the meaning
of the return values.

void SetFillTime(float filltime) Sets the fill time in seconds. This is the time in which the effect has
to fill the whole matrix with pixels.

float GetFillTime() Returns the fill time in seconds.

void SetDuration(float delaytime) Sets the duration in seconds. This is the time the effect waits after
it has filled the whole matrix.

float GetDuration() Returns the duration in seconds.

void SetColor(int idx, color c) Sets the color at the specified index in the Color Table dialog. If
idx is out of range, nothing happens.

color GetColor(int idx) Returns the color with the specified index in the color table. If the
index is out of range, b lack is returned.

int GetColorCount() Returns the number of colors in the color table.

void AddColor(int idx, color c) Adds another color to the color table at the specified index
position. If the index is lower or equal to 0, the new color is added
to the first position. If the index is greater than the current number
of colors, the new color is added at the end.

void RemoveColor(int idx) Removes the color located at the specified index. If the given
index is out of range, nothing happens. The Color Table of this
effect needs to include at least 2 entries.

void SetWidth(int size) Sets the size of objects for the fill mode Random, Drops, Snake,
and Tetris. Valid values range from 1 to double the size of the
virtual matrix.

int GetWidth() Returns the size of objects for the fill mode Random, Drops,
Snake, and Tetris.

void SetPitch(int pitch) Sets the distance of objects for the fill mode Random, and Drops.
Valid values range from 1 to double the size of the virtual matrix.

int GetPitch() Returns the distance of objects for the fill mode Random, and
Drops.

void SetShape(int shape) Sets the shape of objects for the fill mode Random, Drops, and
Tetris. Applicable values can be found in the table below.

int GetShape() Returns the shape of objects for the fill mode Drops.

void SetMirror(int value) Activates or deactivates mirror mode for the fill mode Snake.
Applicable values are 0 (off) and 1 (on).

int GetMirror() Returns if mirror mode is activated or not.

void SetCircle(int value) Activates or deactivates circle mode for the fill mode Snake.
Applicable values are 0 (off) and 1 (on).

int GetCircle() Returns if circle mode is activated or not.

void SetCenter(int value) Activates or deactivates center mode for the fill mode Snake.
Applicable values are 0 (off) and 1 (on).

MADRIX 2 Script Help and Manual236

© 2014 inoage GmbH

int GetCenter() Returns if center mode is activated or not.

This Effect uses the Color Table. Learn more about Using Colors.

Setting The Fill Mode

By using the function SetF illMode it is possible to set the mode the effect uses to fill the matrix.

The following constants must be used to set the different fill modes:

Value Description

MODE_RANDOM Sets the Random fill mode.

MODE_DROPS Sets the Drops fill mode.

MODE_SNAKE Sets the Snake fill mode.

MODE_FLAT Sets the Flat fill mode.

MODE_COLLAPSE Sets the Collapse fill mode.

MODE_TETRIS Sets the Tetris fill mode.

Shapes for Fill Mode Drops

Macros For Effects 237

© 2014 inoage GmbH

The fill mode Drops uses various geometrical figures. With the function SetShape it is possible to

change them. The following values can be used as parameter:

Value Description

DRAW_RECT Selects the unfilled rectangle for drawing.

FILL_RECT Selects the filled rectangle for drawing.

DRAW_CIRCLE Selects the unfilled circle for drawing.

FILL_CIRCLE Selects the filled circle for drawing.

DRAW_CROSS Selects the cross for drawing.

DRAW_STAR Selects the star for drawing.

DRAW_LINE Selects the line mode for drawing.

DRAW_DIAMOND Selects the unfilled diamond for drawing.

FILL_DIAMOND Selects the filled diamond for drawing.

DRAW_RANDOM Selects random shapes for drawing.

Full Example

The following example changes the fill mode after the matrix has been filled up completely.

int g_startTime;

void InitEffect()
{
 time t = GetTime();
 g_startTime = t.hour * 3600 + t.min * 60 + t.sec;
}

void PreRenderEffect()
{
 time t = GetTime();
 int t2 = t.hour * 3600 + t.min * 60 + t.sec;

 if(t2 - g_startTime > (int)GetFillTime())
 {
 g_startTime = t2;
 if(GetFillMode() == MODE_RANDOM)
 SetFillMode(MODE_DROPS);
 else if(GetFillMode() == MODE_DROPS)
 SetFillMode(MODE_SNAKE);
 else if(GetFillMode() == MODE_SNAKE)
 SetFillMode(MODE_FLAT);
 else if(GetFillMode() == MODE_FLAT)

MADRIX 2 Script Help and Manual238

© 2014 inoage GmbH

 SetFillMode(MODE_COLLAPSE);
 else if(GetFillMode() == MODE_COLLAPSE)
 SetFillMode(MODE_TETRIS);
 else {
 SetFillMode(MODE_DROPS);
 }
 }
}

void PostRenderEffect()
{
 if(GetFillTime() != 10)
 SetFillTime(10);
}

Explanation:

Since the effect cannot detect when the matrix has been filled up, it uses the fill time and

changes the fill mode after the fill t im e has passed. In the PostRenderEffec t function the time is

corrected and set to 10, because each fill mode sets its own default time when activated.

5.3.6 SCE Color Ramp

Functions Provided By SCE Color Ramp

The following table provides an overview of all functions the effect can use:

Function Description

void SetDirection(int direction) Sets the direction of the Color Ramp. Please use a define as
described below for d irection.

int GetDirection() Returns the direction currently in use.

void SetCrossed(int enable) Use true or 1 for enable to activate Cross Mode for the Direction.
Use fa lse or 0 to deactivate it.

int GetCrossed() Returns true if "Cross Mode" is enabled, otherwise fa lse.

void SetAngle(int angle) Sets the angle for the Color Ramp, type Radial.

int GetAngle() Gets the current angle.

void SetColor(int index, color c) Sets the co lo r c at the specified index in the Color Ramp. If index
is out of range, nothing happens.

color GetColor(int index) Returns the co lo r with the specified index in the Color Ramp. If
the index is out of range, b lack is returned.

int GetColorCount() Returns the amount of colors currently used by the Color Ramp.

Macros For Effects 239

© 2014 inoage GmbH

void AddColor(color c, float position, int
fade)

Adds another co lo r c to the Color Ramp at the specified position.
Valid values for position range from 0.01 to 0.99. If the index is
lower or equal to 0, the new color is added to the first position. If
index is greater than the current number of colors, the new color
is added at the end. Valid values for fade are 1 (On) or 0 (Off).

void RemoveColor(int index) Removes the color at the specified index. If the given index is out
of range, nothing happens.

int SetColorPosition(int index, float
position)

Sets the color of the given index to a new position and returns the
new index. Valid values for position range from 0.01 to 0.99. The
first and last color are not allowed to be moved!

float GetColorPosition(int index) Returns the color position of the given index.

void SetColorFade(int index, fade) Sets the color fade option for the given index. Valid values for
fade are 1 (On) or 0 (Off).

int GetColorFade(int index) Returns the color fade option for the given index.

void FadeAllColors() Enables color fade for all colors in the Color Ramp.

void FadeNoneColors() Disables color fade for all colors in the Color Ramp.

void SetUniformDistances() Sets uniform distances between each color in the Color Ramp.

void InvertColorPositions() Inverts the positions of the colors in the Color Ramp.

void InvertColors() Inverts every single color in the Color Ramp.

This Effect uses the Color Ramp. Learn more about Using Colors.

Deprecated Functions

Deprecated functions are outdated functions and should not be used anymore.

Function Description

int SetPosition(int index, float pos) Use SetColorPosition() instead.

float GetPosition(int index) Use GetColorPosition() instead.

void SetFade(int index) Use SetColorFade() instead.

int GetFade(int index) Use GetColorFade() instead.

Directions Of The Color Ramp

MADRIX 2 Script Help and Manual240

© 2014 inoage GmbH

In addition to the standard directions,there are five additional directions available:

Value / Define Description

DIR_OUTWARDS Sets the Color Ramp type to 'Box Ramp Explode'.

DIR_INWARDS Sets the Color Ramp type to 'Box Ramp Implode'.

DIR_CIRCLE_OUTWARDS Sets the Color Ramp type to 'C ircular Ramp Explode'.

DIR_CIRCLE_INWARDS Sets the Color Ramp type to 'C ircular Ramp Implode'.

DIR_RADIAL Sets the Color Ramp type to 'Radial Ramp'.

5.3.7 SCE Color Scroll

Functions Provided By SCE Color Scroll

The following table provides an overview of all functions the effect can use:

Function Description

void SetDirection(int direction) Sets the scroll direction. Allowed are all DIR_ constants for
directions and there are some additional directions available,
which are described below.

int GetDirection() Returns the current scroll direction.

void SetCrossed(int enable) Disables "cross mode" if enable is fa lse, otherwise it will be
enabled.

int GetCrossed() Returns true if "cross mode" is enabled, otherwise fa lse.

void SetBpm(int bpm) Sets the bpm value of the effect. Valid values range from 0 to
9999.

int GetBpm() Returns the currently set BPM value.

void SetPixelStepWidth(int width) Sets the step value, which is the number of pixels the effect should
scroll per frame using absolute values.

int GetPixelStepWidth() Returns the step value.

void SetVectorStepWidth(float width) Sets the step value, which is the number of pixels the effect should
scroll per frame using relative values. The given value is relative
to the current matrix size and the current direction. See below for
further details.

float GetVectorStepWidth() Returns the step value relative to the matrix size and scroll
direction. See below for further details.

void SetPixelOffset(int offset) Sets the offset in pixels, which means the width of the single
stripes.

int GetPixelOffset() Returns the offset value, the width of a stripe, in pixels.

Macros For Effects 241

© 2014 inoage GmbH

void SetVectorOffset(float offset) Sets the offset value relative to the matrix size and direction. See
below for further details.

float GetVectorOffset() Returns the offset relative to the matrix size and direction. See
below for further details.

void SetRandom(int enable) Enables or disables random mode.

int GetRandom() Returns true if random mode is enabled, otherwise false.

void SetPixelRandValues(int min, int
max)

Sets the random values in pixels.

int GetPixelMinRandValue() Returns the minimum random value in pixels.

int GetPixelMaxRandValue() Returns the maximum random value in pixels.

void SetVectorRandValues(float min,
float max)

Sets the random values as values relative to the current matrix
size and direction. See below for details.

float GetVectorMinRandValue() Returns the minimum random value as value relative to the matrix
size and direction. See below for details.

float GetVectorMaxRandValue() Returns the maximum random value as value relative to the
matrix size and direction. See below for details.

void SetPixelXOffset(int offset) Sets the X-Offset in pixels.

int GetPixelXOffset() Returns the current X-Offset in pixels.

void SetVectorXOffset(float offset) Sets the X-Offset relative to the matrix size and direction. See
below for details.

float GetVectorXOffset() Retrieves the X-Offset relative to the matrix size and direction.
See below for details.

void SetFade(int enable) Enables the interpolation between two colors. If enable is true,
interpolation will be enabled, otherwise disabled.

int GetFade() Returns whether interpolation between two colors is enabled, or
not.

void SetColor(int idx, color c) Sets the color at the specified index in the Color Table dialog. If
idx is out of range, nothing happens.

color GetColor(int idx) Returns the color with the specified index in the color table. If the
index is out of range, b lack is returned.

int GetColorCount() Returns the current number of colors in the color table.

void AddColor(int idx, color c) Adds another color to the color table at the specified index
position. If the index is lower or equal to 0, the new color is added
to the first position. If the index is greater than the current number
of colors, the new color is added at the end.

 void RemoveColor(int idx) Removes the color located at the specified index. If the given
index is out of range, nothing happens. The Color Table of this
effect needs to include at least 2 entries.

This Effect uses the Color Table. Learn more about Using Colors.

MADRIX 2 Script Help and Manual242

© 2014 inoage GmbH

Using Relative Values

The relative values mentioned above, e.g. for SetVec torStepWidth, relate to the current direction

and matrix size. For vertical and horizontal scroll directions, it is simple to understand. For

horizontal (left, right) movements, the values relate to the matrix width and for vertical

movements (up, down), the values relate to the matrix height.

For diagonal movements, e.g. to the upper left corner, the values relate to the higher value of

either matrix width or height. For example, the size of the matrix is 40 pixels in width and 55 pixels

in its height. Then, given values relate to the height with 55 pixels. This is due to the fact that it

fits better than using the extent of the matrix diagonal.

Macros For Effects 243

© 2014 inoage GmbH

Additional Scroll Directions

As you can see, this effect provides additional directions. Regarding vertical and horizontal

movements, this refers to outside movement to the center or and movement from the center to

the outside. They can be set with the function SetDirec t ion using the following constants:

Value Description

DIR_OUTWARDS_V Sets a vertical outward movement (Vertical Explode).

DIR_INWARDS_V Sets a vertical inward movement (Vertical Implode).

DIR_OUTWARDS_H Sets a horizontal outward movement (Horizontal Explode).

DIR_INWARDS_H Sets a horizontal inward movement (Horizontal Implode).

DIR_OUTWARDS_RECT Sets a rectangular outward movement (Rectangle Explode).

DIR_INWARDS_RECT Sets a rectangular inward movement (Rectangle Implode).

DIR_OUTWARDS_SQUARE Sets a quadratic outward movement (Square Explode).

DIR_INWARDS_SQUARE Sets a quadratic inward movement (Square Implode).

DIR_OUTWARDS_CIRCLE Sets a circled outward movement (Circle Explode).

DIR_INWARDS_CIRCLE Sets a circled inward movement (Circle Implode).

DIR_OUTWARDS_ELLIPSE Sets an elliptic outward movement (Ellipse Explode). This is
different to a circle on rectangular matrices. On quadratic matrices
the ellipse will also be a circle.

DIR_INWARDS_ELLIPSE Sets an elliptic inward movement (Ellipse Implode). This is
different to a circle on rectangular matrices. On quadratic matrices
the ellipse will also be a circle.

5.3.8 SCE Drops

Functions Provided By SCE Drops

The following table provides an overview of all functions the effect can use:

Function Description

void SetDirection(int dir) Set the direction of the effect. Valid values are DIR_UP,
DIR_DOWN, DIR_LEFT and DIR_RIGHT.

int GetDirection() Returns the current direction.

MADRIX 2 Script Help and Manual244

© 2014 inoage GmbH

void SetBpm(int bpm) Sets the speed of the effect in BPM. Valid values range from 0 to
9999 BPM.

int GetBpm() Returns the current effect speed in BPM.

void SetStep(int step) Sets the step value, which stretches the drops. For example, a
step value of 2 will render drops every second pixel. Valid values
for step range from 1 to 100.

int GetStep() Returns the currently set step value.

void SetLength(int length) Sets the length of the objects. Valid values range from 1 to 100.

int GetLength() Returns the current object length.

void SetCount(int count) Sets the number of shapes which shall be created. Valid values
range from 0 to 100.

int GetCount() Returns the number of shapes currently used.

void SetWidth(int width) Sets the size of the objects in pixels. Valid values range from 1 to
100.

int GetWidth() Returns the size of the objects in pixels.

void SetPitch(int pitch) Sets the pitch between two shapes in pixels. Valid values range
from 1 to 100.

int GetPitch() Returns the currently set pitch in pixels.

void SetColorMode(int mode) Sets the effect color mode. See the color mode table below for
further details.

int GetColorMode() Returns the current color mode. See below for further details.

void SetShape(int mode) Sets the shape the effect should use. See below for further details.

int GetShape() Returns the currently used shape. See below for further details.

void SetColor(int idx, color c) Sets the color with the specified index to the given color value. If
the index is out of range, nothing happens.

color GetColor(int idx) Returns the color with the specified index in the color table. If the
index is out of range, b lack is returned.

int GetColorCount() Returns the current number of colors in the color table.

void AddColor(int idx, color c) Adds another color to the color table at the specified index
position. If the index is lower or equal to 0, the new color is added
to the first position. If the index is greater than the current number
of colors, the new color is added at the end.

void RemoveColor(int idx) Removes the color located at the specified index. If the given
index is out of range, nothing happens. The Color Table of this
effect needs to include at least 1 entry.

This Effect uses the Color Table. Learn more about Using Colors.

Macros For Effects 245

© 2014 inoage GmbH

Color Modes

This effect uses various color modes. With the function SetColorMode it is possible to change

them. The following values can be used as parameter:

Value Description

CM_LOOP Sets the loop mode. In this mode the effect loops through the
colortable to select the colors for new shapes.

CM_SHUFFLE Sets the shuffle mode. In this mode the effect selects the color for
a new shape from the color table by random access.

CM_RANDOM Sets the random mode. In this mode the colors for the shapes are
generated by random but 10% of the colors will be generated by
random access to the color table.

Shapes

This effect uses various geometrical figures. With the function SetShape it is possible to change

them. The following values can be used as parameter:

Value Description

DRAW_RECT Selects the unfilled rectangle for drawing.

FILL_RECT Selects the filled rectangle for drawing.

DRAW_CIRCLE Selects the unfilled circle for drawing.

FILL_CIRCLE Selects the filled circle for drawing.

DRAW_CROSS Selects the cross for drawing.

DRAW_STAR Selects the star for drawing.

DRAW_LINE Selects the line mode for drawing.

DRAW_DIAMOND Selects the unfilled diamond for drawing.

FILL_DIAMOND Selects the filled diamond for drawing.

DRAW_RANDOM Selects random shapes for drawing.

MADRIX 2 Script Help and Manual246

© 2014 inoage GmbH

5.3.9 SCE Explosions

Functions Provided By SCE Explosions

The following table provides an overview of all functions the effect can use:

Function Description

void SetDirection(int dir) Set the direction of the effect. Valid values are DIR_UP,
DIR_DOWN, DIR_LEFT and DIR_RIGHT.

int GetDirection() Returns the current direction.

void SetBpm(int bpm) Sets the speed of the effect in BPM. Valid values range from 0 to
9999. The default value is 3000.

int GetBpm() Returns the current speed of the effect in BPM.

void SetExplosionSize(int size) Sets the size of a single explosion. Valid values for s ize range
from 1 to 1000. The default value is 400.

int GetExplosionSize() Returns the current size of a single explosion.

void SetShapeSize(int size) Sets the size of single objects. Valid values for s ize range from 1
to 100. The default value is 8.

int GetShapeSize() Returns the current size of single objects.

void SetGravity(float gravity) Sets the gravity value for the effect. Valid values range from 0.01
to 99.99. The default value is 0.25.

float GetGravity() Returns the currently set gravity.

void SetFadeOut(int fadeout) Sets the size of a fade out tail. Valid values range from 0 to 1000.
The default value is 20.

int GetFadeOut() Returns the currently set fade out value.

void SetShapeCount(int count) Sets the number of objects within an explosion. Valid values range
from 1 to 1000. The default value is 75.

int GetShapeCount() Returns the currently set number of objects of an explosion.

void SetRocketCount(int count) Sets the number of rockets or explosions displayed by the effect
at the same time in Fireworks mode and Explosion mode. Valid
values range from 0 to 100. The default value is 1.

int GetRocketCount() Returns the currently set number of rockets or explosions.

void SetBlur(int enable) Activates Blur mode for the effect. Valid values are 0 (off) or 1
(on).

int GetBlur() Returns the status of Blur mode.

void FireRocket(int posX, int posY, int
explPosX, int explPosY, int ParticleCtn, int
explSize, int explShape, int drawShape,
color Col, color sparkleCol)

Manually creates a firework. posX is the X-coordinate, posY is the
Y-coordinate, explPosX is the end-coordinate of the fireworks
explosion in X, explPosY is the end-coordinate of the fireworks
explosion in Y, Partic leC tn is the number of objects, explSize is the
size of the fireworks explosion, explShape is the type of the
fireworks explosion, drawShape is the shape of the objects, Co l is
the color of the effect, spark leCo l is the color of the sparkle part.

Macros For Effects 247

© 2014 inoage GmbH

void Detonate(int explPosX, int explPosY,
int ParticleCtn, int explSize, int explShape,
int drawShape, color Col, color sparkleCol)

Manually creates an explosion. explPosX is the end-coordinate of
the explosion in X, explPosY is the end-coordinate of the explosion
in Y, Partic leC tn is the number of objects, explSize is the size of
the explosion, explShape is the type of the explosion, drawShape
is the shape of the objects, Co l is the color of the effect,
spark leCo l is the color of the sparkle part.

void SetExplosionMode(int mode) Sets the explosion mode. See below for details.

int GetExplosionMode() Returns which effect mode is set.

void SetExplosionShape(int shape) Sets the type of an explosion. See below for details.

int GetExplosionShape() Returns which type of explosion is selected.

void SetDrawShape(int shape) Sets the type of objects of an explosion. See below for details.

int GetDrawShape() Returns which object shape is set.

void SetColorMode(int mode) Sets the type of color mode of the Color Table. See below for
details.

int GetColorMode() Returns which color mode is set for the Color Table.

int GetColorCount() Returns the number of colors in the Color Table.

void RemoveColor(int idx) Removes the color located at the specified index. If the given
index is out of range, nothing happens. The Color Table of this
effect needs to include at least 1 entry.

void SetColor(int idx, color c) Sets the color values for a certain, indexed color in the Color
Table.

color GetColor(int idx) Returns which color is set for a certain color at a certain position
(index) in the Color Table.

void AddColor(int idx, color c) Adds color c at position idx to the Color Table.

void SetSparkleColorMode(int mode) Sets the type of color mode of the Color Table for the Sparkle.
See below for details.

int GetSparkleColorMode() Returns which color mode is set for the Color Table of the Sparkle.

int GetSparkleColorCount() Returns the number of colors in the Color Table of the Sparkle.

void RemoveSparkleColor(int) Removes a color from the Sparkle Color Table.

void SetSparkleColor(int idx, color c) Sets the color values for a certain, indexed color in the Sparkle
Color Table.

color GetSparkleColor(int idx) Returns which color is set for a certain color at a certain position
(index) in the Sparkle Color Table.

void AddSparkleColor(int idx, color c) Adds color c at position idx to the Sparkle Color Table.

This Effect uses the Color Table. Learn more about Using Colors.

MADRIX 2 Script Help and Manual248

© 2014 inoage GmbH

 Explosion Modes

This effect uses various color modes. The function SetExplosionMode can be used to change

them. The following values can be used as parameter:

Value Description

MODE_EXPLOSIONS Sets the Explosion mode.

MODE_FIREWORKS Sets the Fireworks mode.

Explosion Shapes

This effect uses various color modes. The function SetExplosionShape can be used to change

them. The following values can be used as parameter:

Value Description

EXPLOSION_SHAPE_SPHERE Sets the sphere type of
explosion.

EXPLOSION_SHAPE_SPHERE_GLOW Sets the glowing sphere type of
explosion.

EXPLOSION_SHAPE_SPIRAL Sets the spiral type of explosion.

EXPLOSION_SHAPE_RADIAL Sets the radial type of
explosion.

EXPLOSION_SHAPE_DIAMOND Sets the diamond type of
explosion.

EXPLOSION_SHAPE_STAR Sets the star type of explosion.

EXPLOSION_SHAPE_RANDOM Sets a random type of
explosion.

Macros For Effects 249

© 2014 inoage GmbH

Shapes

This effect uses various geometrical figures. The function SetDraw Shape can be used to change

them. The following values can be used as parameter:

Value Description

DRAW_RECT Selects the unfilled rectangle for drawing.

FILL_RECT Selects the filled rectangle for drawing.

DRAW_CIRCLE Selects the unfilled circle for drawing.

FILL_CIRCLE Selects the filled circle for drawing.

DRAW_CROSS Selects the cross for drawing.

DRAW_STAR Selects the star for drawing.

DRAW_DIAMOND Selects the unfilled diamond for drawing.

FILL_DIAMOND Selects the filled diamond for drawing.

DRAW_RANDOM Selects random shapes for drawing.

Color Modes

This effect uses various color modes. The function SetColorMode can be used to change them.

The following values can be used as parameter:

Value Description

CM_LOOP Sets the loop mode. In this mode the effect loops through the
colortable to select the colors for new shapes.

CM_SHUFFLE Sets the shuffle mode. In this mode the effect selects the color for
a new shape from the color table by random access.

CM_RANDOM Sets the random mode. In this mode the colors for the shapes are
generated by random but 10% of the colors will be generated by
random access to the color table.

MADRIX 2 Script Help and Manual250

© 2014 inoage GmbH

5.3.10 SCE Fire

Functions Provided By SCE Fire

The following table provides an overview of all functions the effect can use:

Function Description

General

void SetBpm(int bpm) Set the speed of the effect in BPM. Valid values range from 0 to
9999.

int GetBpm() Returns the current effect speed in BPM.

void SetDirection(int direction) Sets the direction of the fire. Valid values for d irection are
DIR_LEFT, DIR_RIGHT, DIR_UP, and DIR_DOWN.

int GetDirection() Returns the current direction.

void SetHeight(int height) Sets the height of the fire. Valid values are include 1 up to 32.

int GetHeight() Returns the current height.

void SetMode(mode) Sets the mode of the effect. Valid values for m ode are described
in the table below.

int GetMode() Returns the currently selected mode. See table below for returned
values.

Mode "Fire"

void SetColorMode(int mode) Sets the color mode of the fire. Valid values for m ode are
described in the table below.

int GetColorMode() Returns the current color mode. See table below for returned
values.

Mode "Flames"

void SetFlameSize(int size) Sets the size of the flames. Valid values for s ize range from 1 to
100.

int GetFlameSize() Returns the size of the flames.

void SetIntensity(int intensity) Sets the intensity of the flames. Valid values for intensity range
from 1 to 100.

int GetIntensity() Returns the currently used intensity for the flames.

void SetColor(int index, color c) Sets the color at the specified index in the Color Ramp dialog. If
index is out of range, nothing happens.

color GetColor(int index) Returns the color with the specified index in the Color Ramp
dialog. If the index is out of range, b lack is returned.

int GetColorCount() Returns the number of colors used in the Color Ramp.

int SetColorPosition(int index, float
position)

Sets the color of the given index to a new position and returns the
new index. Valid values for position range from 0.01 to 0.99. The
first and last color are not allowed to be moved!

float GetColorPosition(int index) Returns the position of a color at the specified index.

Macros For Effects 251

© 2014 inoage GmbH

void SetColorFade(int index, int mode) Disables or enables color fade for the color at the specified index
position by either using 0 or 1 for m ode.

int GetColorFade(int index) Returns if color fade is set for the color at the specified index.

void FadeAllColors() Enables color fade for all colors in the Color Ramp.

void FadeNoneColors() Disables color fade for all colors in the Color Ramp.

void SetUniformDistances() Sets uniform distances between each color in the Color Ramp.

void InvertColorPositions() Inverts the positions of the colors in the Color Ramp.

void InvertColors() Inverts every single color in the Color Ramp.

void AddColor(color c, float position, int
fade)

Adds another co lo r c to the Color Ramp at the specified position.
Valid values for position range from 0.01 to 0.99. If the index is
lower or equal to 0, the new color is added to the first position. If
index is greater than the current number of colors, the new color
is added at the end. Valid values for fade are 1 (On) or 0 (Off).

void RemoveColor(int index) Removes the color at the specified index. If the given index is out
of range, nothing happens.

This Effect uses the Color Ramp dialog. Learn more about Using Colors.

MADRIX 2 Script Help and Manual252

© 2014 inoage GmbH

Deprecated Functions

Deprecated functions are outdated functions and should not be used anymore.

Function Description

void SetSpeed(int speed) Sets the speed of the effect in FPS. Valid values range from 0 to
166. Please note: This function is deprecated and may be
removed in one of the next releases. Use SetBpm instead.

float GetSpeed() Returns the current effect speed in FPS. Please note: This
function is deprecated and may be removed in one of the next
releases. Use GetBpm instead.

Color Modes

The SCE Fire effect supports different predefined color modes in the "Fire" mode. It is possible to

set them within a macro using the SetColorMode function. Therefore the following values are

defined and should be used as parameter:

Value Description

COLOR_RG Selects the red-green color mode.

COLOR_RB Selects the red-blue color mode.

COLOR_GR Selects the green-red color mode.

COLOR_GB Selects the green-blue color mode.

COLOR_BR Selects the blue-red color mode.

COLOR_BG Selects the blue-green color mode.

Effect Modes

Macros For Effects 253

© 2014 inoage GmbH

The SCE Fire effect supports two different modes:"Fire" and "Flames". It is possible to set them

within a macro using the SetMode function. Therefore the following values are defined and should

be used as parameter:

Value Description

MODE_FIRE Selects the fire mode.

MODE_FLAMES Selects the flames mode.

Full Example

The following example combines functions of the fire effect with sound data analysis.

float new_width = 0.2;
float new_fact;
float old_fact;
int mh;

void InitEffect()
{
 SetBpm(400);
 SetDirection(DIR_UP);
 mh = GetMatrixHeight();
 SetColorMode(COLOR_RG);
}

void MatrixSizeChanged()
{
 InitEffect();
}

void PreRenderEffect()
{
 new_fact = ((float)(GetSoundLevel(0) + GetSoundLevel(1))) / 800.0 + 0.4;
 new_fact = new_fact * new_width + old_fact * (1.0 - new_width);
 SetHeight((int)((float)mh * new_fact));
 old_fact = new_fact;
}

Explanation:

The source code sets the height of the fire depending on the sound level. Furthermore, it stores

the current matrix height in a global variable and therefore uses Mat r ixSizeChanged in order to set

the variable equal to the matrix size. Works best with a matrix size of 50 x 50 pixels.

MADRIX 2 Script Help and Manual254

© 2014 inoage GmbH

5.3.11 SCE Graph

Functions Provided By SCE Graph

The following table provides an overview over all functions the effect provides:

Function Description

void SetBpm(int bpm) Sets the speed for the movement. bpm must be within a range of
0 to 9999 BPM. E.g. a value of 60 means that it is moved one pixel
per second into the given direction. The default value is 1200.

int GetBpm() Returns the current speed for the movement of objects in BPM.

void SetDirection(int direction) Sets the direction of the movement. Valid values for d irection are
DIR_LEFT, DIR_RIGHT, DIR_UP, and DIR_DOWN.

int GetDirection() Returns the current effect direction.

void SetHeight(int value) Sets the height (size) of elements. The default value is 10.

int GetHeight() Returns the current height (size) of elements.

void SetHeightMax(int value) Sets the maximum height of elements.

int GetHeightMax(int value) Returns the current maximum height of elements.

void SetWidth(int value) Sets the width (size) of elements. The default value is 10.

int GetWidth() Returns the current width (size) of elements.

void SetWidthMax(int value) Sets the maximum width of elements.

int GetWidthMax() Returns the current maximum width of elements.

void SetPitch(int value) Sets the distance between elements. The default value is 10.

int GetPitch() Returns the currently used distance between elements.

void SetPitchMax(int value) Sets the maximum distance between elements.

int GetPitchMax() Returns the current maximum distance between elements.

void SetFrequency(int index, float value) Sets the rate of the graph function for mode 1, 2, or 3. Indexing (
index) starts with 0. The default value is 1.

float GetFrequency(int index) Returns the current frequency for mode 1, 2, or 3. Indexing (index
) starts with 0.

void SetFrequencyMax(float value) Sets the maximum frequency. A Distribution Mode should be
activated first.

float GetFrequencyMax() Returns the maximum frequency.

void SetPeak(int index, int value) Sets the Peak for the graph function for mode 1, 2, or 3. Indexing
(index) starts with 0. The default value is 50.

int GetPeak(int index) Returns the current Peak for mode 1, 2, or 3. Indexing (index)
starts with 0.

void SetShape(int shape) Sets the shape for elements. One of the shapes (Defines)
described below must be used.

Macros For Effects 255

© 2014 inoage GmbH

int GetShape() Returns the currently used shape for elements.

void SetColorMode(int mode) Sets the color mode for the Color Table. One of the modes
(Defines) described below must be used.

int GetColorMode() Returns the current color mode for the Color Table.

void SetModeHeight(int mode) Sets the Distribution Mode for Height. One of the modes (Defines)
described below must be used.

int GetModeHeight() Returns the current Distribution Mode for Height.

void SetModeWidth(int mode) Sets the Distribution Mode for Width. One of the modes (Defines)
described below must be used.

int GetModeWidth() Returns the current Distribution Mode for Width.

void SetModePitch(int mode) Sets the Distribution Mode for Pitch. One of the modes (Defines)
described below must be used.

int GetModePitch() Returns the current Distribution Mode for Pitch.

void SetModeFrequency(int mode) Sets the Distribution Mode for Frequency. One of the modes
(Defines) described below must be used.

int GetModeFrequency() Returns the current Distribution Mode for Frequency.

void SetText(string text) Sets the text for the shape Text. Example: SetText("MADRIX").

string GetText() Returns the currently used text.

void SetRotation(int angle) Rotates the text by multiples of 90°. Valid values for angle are 0,
90, 180, and 270.

int GetRotation() Returns the current rotation of text.

void SetFontWidth(int value) Sets the width of the font.

int GetFontWidth() Returns the width of the currently used font.

void SetFontHeight(int value) Sets the height of the font.

int GetFontHeight() Returns the height of currently used font.

void SetFontItalic(int value) Sets the font in italics (va lue = 1) or not (va lue = 0).

int GetFontItalic() Returns if the font used is in italics.

void SetFontUnderline(int value) Sets underlining for the font (va lue = 1) or not (va lue = 0).

int GetFontUnderline() Returns if the currently used font is underlined.

void SetFontStrikeOut(int value) Sets strikeout for the font (va lue = 1) or not (va lue = 0).

int GetFontStrikeOut() Returns if the a strikeout font is used.

void SetFontWeight(int value) Sets the weight of the font. Valid values for va lue range from 0 to
1000.

int GetFontWeight() Returns the weight of the currently used font.

void SetFontFaceName(string name) Sets which font to use. A maximum of 31 characters is allowed for
str ing. Example: SetFontFaceName("Arial");

string GetFontFaceName() Returns the name of the font currently in use.

void SetMode(int mode) Sets the text mode. One of the modes (Defines) described below
must be used.

int GetMode() Returns the currently used text mode.

MADRIX 2 Script Help and Manual256

© 2014 inoage GmbH

void SetContinuous(int enable) Enables (enable = 1) or disables (enable = 0) continuous text
("Cont. Text") for the Text mode.

int GetContinuous() Returns if continuous text is enabled (1) or not (0).

void SetGraphMode(int index, int mode) Sets the trigonometric functions for the graph for mode 1, 2, or 3.
Valid values for index are 0, 1, and 2. Indexing (index) starts with
0. One of the modes (Defines) described below must be used.

int GetGraphMode(int index) Returns the currently used trigonometric mode for mode 1, 2, or
3. Valid values for index are 0, 1, and 2. Indexing (index) starts
with 0.

void SetColor(int idx, color c) Sets the color at the specified index in the Color Table dialog. If
idx is out of range, nothing happens.

color GetColor(int idx) Returns the color of the specified index in the color table. If the
index is out of range, b lack is returned.

int GetColorCount() Returns the number of colors in the color table.

void AddColor(int idx, color c) Adds another color to the color table at the specified index
position. If the index is lower or equal to 0, the new color is added
to the first position. If the index is greater than the current number
of colors, the new color is added at the end.

void RemoveColor(int idx) Removes the color located at the specified index. If the given
index is out of range, nothing happens. The Color Table of this
effect needs to include at least 1 entry.

This Effect uses the Color Table. Learn more about Using Colors.

Trigonometric Functions

This effect uses four trigonometric functions. The function SetGraphMode can be used to change

them. The following values can be used as parameter:

Value Description

MODE_SINE Selects the sine function.

MODE_COSINE Selects the cosine function.

MODE_TRIANGLE Selects the triangle function.

MODE_SQUARE Selects the square function.

MODE_NONE Deselects the trigonometric function.

Distribution Modes

Macros For Effects 257

© 2014 inoage GmbH

This effect uses various Distribution Modes for several functions. The following values can be used

as parameter:

Value Description

MODE_UNIFORM Selects a uniform distribution curve as function.

MODE_LINEAR Selects a linear distribution curve as function.

MODE_QUADRATIC Selects a quadratic distribution curve as function.

MODE_SQRT Selects a square root distribution curve as function.

MODE_CUBIC Selects a cubic distribution curve as function.

MODE_RANDOM Selects a random distribution curve as function.

Shapes

This effect uses various geometrical figures. The function SetShape can be used to change them.

The following values can be used as parameter:

Value Description

DRAW_RECT Selects the unfilled rectangle for drawing.

FILL_RECT Selects the filled rectangle for drawing.

DRAW_CIRCLE Selects the unfilled circle for drawing.

FILL_CIRCLE Selects the filled circle for drawing.

DRAW_CROSS Selects the cross for drawing.

DRAW_STAR Selects the star for drawing.

DRAW_DIAMOND Selects the unfilled diamond for drawing.

FILL_DIAMOND Selects the filled diamond for drawing.

DRAW_RANDOM Selects random shapes for drawing.

DRAW_TEXT Selects the text mode.

MADRIX 2 Script Help and Manual258

© 2014 inoage GmbH

Color Modes

This effect uses various color modes in the Color Table. The function SetColorMode can be used

to change them. The following values can be used as parameter:

Value Description

CM_LOOP Sets the loop mode. In this mode the effect loops through the
colortable to select the colors for new shapes.

CM_SHUFFLE Sets the shuffle mode. In this mode the effect selects the color for
a new shape from the color table by random access.

CM_RANDOM Sets the random mode. In this mode the colors for the shapes are
generated by random but 10% of the colors will be generated by
random access to the color table.

Text Modes

The Text shape of this mode supports different text modes. The given text can be interpreted as

a whole sentence, as single words, or even single characters. With the function SetMode it is

possible to set the mode with the following parameters:

Value Description

MODE_SENTENCE Sets the sentence mode.

MODE_WORD Sets the word mode.

MODE_CHAR Sets the character mode.

5.3.12 SCE Metaballs

Functions Provided By SCE Metaballs

The following table provides an overview over all functions the effect provides:

Function Description

void SetBpm(int bpm) Sets the speed for the movement. bpm must be within a range of
0 to 9999 BPM. E.g. a value of 60 means that it is moved one pixel
per second into the given direction.

int GetBpm() Returns the current speed for the movement of objects in BPM.

Macros For Effects 259

© 2014 inoage GmbH

void SetInnerGlow(int value) Sets the value for the inner glow of objects. Valid values for va lue
range from 0 to 100.

int GetInnerGlow() Returns the value of the inner glow of objects.

void SetOuterGlow(int value) Sets the value for the inner glow of objects. Valid values for va lue
range from 0 to 100.

int GetOuterGlow() Returns the value of the outer glow of objects.

void SetBorder(int size) Sets the border size of objects. Valid values for s ize range from 1
to 100.

int GetBorder() Returns the border size of objects.

void SetMaxSize(int size) Sets the maximum size of the objects. Valid values for s ize range
from 1 to 100.

int GetMaxSize() Returns the current maximum size of the objects.

void SetCount(int number) Sets the number of objects. Valid values for num ber range from 1
to 20.

int GetCount() Retrieves the current number of objects.

void SeedRandom() Instantly creates Metaballs with random sizes every time the
function is called.

void SetShape(int shape) Sets the shape to use. One of the defines described below must be
used.

int GetShape() Returns the currently defined shape.

void SetMode(int mode) Sets the distribution curve for the size of the Metaballs. One of the
defines described below must be used.

int GetMode() Retrieves the currently used size distribution mode.

void SetScale(float value) Sets the scale of the Metaballs in random mode using relative
values ranging from 0.01 to 2.0.

float GetScale() Retrieves the currently set scale of the effect. Scale can only be
used while in random mode.

void SetColorMode(int mode) Sets the mode of the Color Table. See below for further details.

int GetColorMode() Returns the currently set mode of the Color Table.

int GetColorCount() Returns the number of colors in the Color Table.

void RemoveColor(int idx) Removes a color from the Color Table.

void SetColor(int idx, color c) Sets the color values for a certain, indexed color in the Color
Table.

color GetColor(int idx) Returns which color is set for a certain color at a certain position
(index) in the Color Table.

void AddColor(int idx, color c) Adds color c at position idx to the Color Table.

void SetColorMix(int mode) Sets the second shape for the color mix. See below for further
details.

int GetColorMix() Returns the currently set second shape for the color mix.

void SetSharpness(int mode) Sets the type of color gradient. See below for further details.

int GetSharpness() Returns the currently set type of color gradient.

MADRIX 2 Script Help and Manual260

© 2014 inoage GmbH

void SetColorMixLink(int value) Sets if auto adjustment for the two shapes is activated (1) or not (
0).

int GetColorMixLink() Returns if auto adjustment is enabled or disabled.

void SetColor(int idx, color c) Sets the color at the specified index in the Color Table dialog. If
idx is out of range, nothing happens.

color GetColor(int idx) Returns the color of the specified index in the color table. If the
index is out of range, b lack is returned.

int GetColorCount() Returns the number of colors in the color table.

void AddColor(int idx, color c) Adds another color to the color table at the specified index
position. If the index is lower or equal to 0, the new color is added
to the first position. If the index is greater than the current number
of colors, the new color is added at the end.

void RemoveColor(int idx) Removes the color located at the specified index. If the given
index is out of range, nothing happens. The Color Table of this
effect needs to include at least 1 entry.

This Effect uses the Color Table. Learn more about Using Colors.

Deprecated Functions

Deprecated functions are outdated functions and should not be used anymore.

Function Description

void setColor(color col) Sets the color of the effect.
Please note: This function is depracated. Use the color functions
described above instead.

color getColor() Returns the color of the effect.
Please note: This function is depracated. Use the color functions
described above instead.

Macros For Effects 261

© 2014 inoage GmbH

Shapes

This effect uses various geometrical figures. With the function SetShape it is possible to change

them. The following values can be used as parameter:

Value Description

DRAW_RECT Selects the unfilled rectangle for drawing.

FILL_RECT Selects the filled rectangle for drawing.

DRAW_CIRCLE Selects the unfilled circle for drawing.

FILL_CIRCLE Selects the filled circle for drawing.

DRAW_DIAMOND Selects the diamond for drawing.

FILL_DIAMOND Selects the filled diamond for drawing.

Distribution Modes

This effect uses various size distribution modes. The function SetMode can be used to change

them. The following values can be used as parameter:

Value Description

MODE_UNIFORM Selects a uniform size of the Metaballs.

MODE_LINEAR Selects a linear distribution curve for the size of the Metaballs.

MODE_QUADRATIC Selects a quadratic distribution curve for the size of the Metaballs.

MODE_SQRT Selects a square root distribution curve for the size of the
Metaballs.

MODE_CUBIC Selects a cubic distribution curve for the size of the Metaballs.

MODE_RANDOM Selects a random distribution curve for the size of the Metaballs.

Color Modes

This effect uses various color modes in the Color Table. The function SetColorMode can be used

to change them. The following values can be used as parameter:

Value Description

MADRIX 2 Script Help and Manual262

© 2014 inoage GmbH

CM_LOOP Sets the loop mode. In this mode the effect loops through the
colortable to select the colors for new shapes.

CM_SHUFFLE Sets the shuffle mode. In this mode the effect selects the color for
a new shape from the color table by random access.

CM_RANDOM Sets the random mode. In this mode the colors for the shapes are
generated by random but 10% of the colors will be generated by
random access to the color table.

Modes

This effect uses a second type of shape and mixes colors of both. With the function SetColorM ix it

is possible to change them. The following values can be used as parameter:

Value Description

MODE_CIRCLE Selects the circle mode.

MODE_RECTANGLE Selects the rectangle mode.

MODE_DIAMOND Selects the diamond mode.

Sharpness

This effect uses various geometrical figures. With the function SetSharpness it is possible to

change them. The following values can be used as parameter:

Value Description

MODE_VERY_BLURRY Selects the very blurry color gradient for Metaballs with several
colors.

MODE_BLURRY Selects the blurry color gradient for Metaballs with several colors.

MODE_SLIGHTLY_BLURRY Selects the slightly blurry color gradient for Metaballs with several
colors.

MODE_MEDIUM Selects the medium color gradient for Metaballs with several
colors.

MODE_SLIGHTLY_CLEAR Selects the slightly clear color gradient for Metaballs with several
colors.

MODE_CLEAR Selects the clear color gradient for Metaballs with several colors.

MODE_VERY_CLEAR Selects the very clear color gradient for Metaballs with several
colors.

Macros For Effects 263

© 2014 inoage GmbH

5.3.13 SCE Plasma

Functions Provided By SCE Plasma

The following table provides an overview of all functions the effect can use:

Function Description

void SetBpm(int bpm) Sets the speed of the effect in BPM. Valid values range from 0 to
9999 BPM.

int GetBpm() Returns the current effect speed in BPM.

void SetColor(int idx, color c) Sets the color at the specified index in the Color Ramp. If idx is
out of range, nothing happens.

color GetColor(int idx) Returns the color with the specified index in the Color Ramp. If the
index is out of range, b lack is returned.

int GetColorCount() Returns the amount of colors currently used by the Color Ramp.

void AddColor(color c, float position, int
fade)

Adds another co lo r c to the Color Ramp at the specified position.
Valid values for position range from 0.01 to 0.99. If the index is
lower or equal to 0, the new color is added to the first position. If
index is greater than the current number of colors, the new color
is added at the end. Valid values for fade are 1 (On).

void RemoveColor(int index) Removes the color at the specified index. If the given index is out
of range, nothing happens.

int SetColorPosition(int index, float
position)

Sets the color of the given index to a new position and returns the
new index. Valid values for position range from 0.01 to 0.99. The
first and last color are not allowed to be moved!

float GetColorPosition(int index) Returns the color position of the given index.

void SetUniformDistances() Sets uniform distances between each color in the Color Ramp.

void InvertColorPositions() Inverts the positions of the colors in the Color Ramp.

void InvertColors() Inverts every single color in the Color Ramp.

This Effect uses the Color Ramp. Learn more about Using Colors.

MADRIX 2 Script Help and Manual264

© 2014 inoage GmbH

Deprecated Functions

Deprecated functions are outdated functions and should not be used anymore.

Function Description

void SetSpeed(int speed) Sets the speed of the effect in FPS. Valid values range from 0 to
166. Please note: This function is deprecated and may be
removed in one of the next releases. Use SetBpm instead.

float GetSpeed() Returns the current effect speed in FPS. Please note: This
function is deprecated and may be removed in one of the next
releases. Use GetBpm instead.

5.3.14 SCE Pulse / Stroboscope

Functions Provided By SCE Pulse / Stroboscope

Function Description

void SetColor(color col) Sets the color for the effect.

color GetColor() Returns the currently set color.

void SetFrequency(int frequency) Sets the frequency for the pulse mode. Valid values range from 1
to 25.

int GetFrequency() Returns the frequency for the pulse mode.

void SetOnTime(float time) Sets the time the flash is activated for the strobe mode. The given
time must be greater 0.

float GetOnTime() Returns the current time the flash is activated for the strobe mode.

void SetOffTime(float time) Sets the time the flash is off for the strobe mode. The given time
must be greater 0.

float GetOffTime() Returns the current time the flash is off for the strobe mode.

void SetMode(int mode) Sets the mode for the effect. This may be pulse or strobe mode.
See table below for valid values.

int GetMode() Returns the current mode of the effect. See table below for values
handed back.

void SetFade(int enable) Disables fade if enable is fa lse, otherwise it will be enabled.

int GetFade() Returns true if fade is enabled, otherwise fa lse.

This Effect uses the Color Picker. Learn more about Using Colors.

Macros For Effects 265

© 2014 inoage GmbH

Effect Modes

This effect supports the two modes "pulse" and "strobe". To change the mode, call the function

SetMode using one the following parameters.

Value Description

MODE_PULSE Activates pulse mode.

MODE_STROBO Activates strobe mode.

5.3.15 SCE Radial

Functions Provided By SCE Radial

The following table provides an overview of all functions the effect can use:

Function Description

void SetColor(color c) Sets the effect color.

color GetColor() Returns the current effect color.

void SetBpm(int speed) Set the speed of the effect in BPM. Valid values range from 0 to
9999 BPM.

int GetBpm() Returns the current effect speed in BPM.

void SetLength(int length) Sets the length of the effect. Valid values range from 0 to 100.

int GetLength() Returns the current length.

void SetCount(int number) Sets the helix count, which means the number of helixes to draw.
num ber must be greater than 0.

int GetCount() Returns the current helix count.

void SetPixelCenter(int x, int y) Sets the center for the effect in pixel coordinates.

int GetPixelCenterX() Returns the current x coordinate of the center in pixels.

int GetPixelCenterY() Returns the current y coordinate of the center in pixels.

void SetVectorCenter(float x, float y) Sets the center for the effect using relative coordinates.

float GetVectorCenterX() Returns the current x coordinate of the center using relative
coordinates.

float GetVectorCenterY() Returns the current y coordinate of the center using relative
coordinates.

void SetEffectMode(int mode) Sets the effect mode. See below for further details.

MADRIX 2 Script Help and Manual266

© 2014 inoage GmbH

int GetEffectMode() Returns the currently set effect mode. See below for further
details.

void SetCurve(int curve) Sets the curve mode. Valid values are 0 to 5 or the defines
described below.

int GetCurve() Returns the currently used curve. See Se tCurve for valid values.

void SetRotation(int direction) Sets the direction of the rotation to clockwise or counter-clockwise.
See table below for possible values of d irection.

int GetRotation() Returns the current rotation direction. See table below for possible
return values.

void SetDirection(int direction) Sets the direction of the helix and the circle from center to the
outside or vice versa. See below for further details.

int GetDirection() Returns the current direction. See below for further details.

void SetFactor(int factor) Sets the current factor value. Valid values range from 0 to 100.

int GetFactor() Returns the current factor value.

void SetAmplitude(int amplitude) Sets the current amplitude value. Valid values range from 0 to
100.

int GetAmplitude() Returns the current amplitude value.

This Effect uses the Color Picker. Learn more about Using Colors.

Macros For Effects 267

© 2014 inoage GmbH

Deprecated Functions

Deprecated functions are outdated functions and should not be used anymore.

Function Description

void SetSpeed(int speed) Sets the speed of the effect in FPS. Valid values range from 0 to
166. Please note: This function is deprecated and may be
removed in one of the next releases. Use SetBpm instead.

float GetSpeed() Returns the current effect speed in FPS. Please note: This
function is deprecated and may be removed in one of the next
releases. Use GetBpm instead.

Effect Modes

The radial effect supports the effect types "circle", "radar" and "helix". The function SetEffec tMode

can be used to set them. The following table provides an overview about the possible values as

parameters for that function:

Value Description

EFFECT_CIRCLE Sets the "circle-mode".

EFFECT_RADAR Sets the "radar-mode".

EFFECT_HELIX Sets the "helix-mode".

Curve Modes

The radial effect supports different types of curves. The function SetCurve can be used to set

them. The following table provides an overview about additional parameters:

MADRIX 2 Script Help and Manual268

© 2014 inoage GmbH

Value Description

CURVE_SIN Sets a "sine" curve.

CURVE_PHASE Sets the "phase" mode.

CURVE_ABSSIN Uses an absolute value of sine for a curve.

CURVE_SAWTOOTH_DOWN Sets the" sawtooth down" mode.

CURVE_SAWTOOTH_UP Sets the "sawtooth up" mode.

CURVE_TRIANGLE Uses a triangle curve.

Rotation Direction

The "radar"- and the "helix" - modes have two possible directions how to rotate: clockwise and

anticlockwise. The function SetRotat ion may be used to set those directions, using the following

values as parameter:

Value Description

ROTATION_CW Sets a clockwise rotation.

ROTATION_CCW Sets a counter clockwise rotation.

Effect Direction

The "circle" mode supports outward and inward movements. The "helix" supports the same

settings, but uses them in different ways. However, to set those directions, use the function

SetDirec t ion with the following values:

Value Description

DIR_OUTWARDS Sets direction to "outwards".

DIR_INWARDS Sets direction to "inwards".

Macros For Effects 269

© 2014 inoage GmbH

Full Example

The following example will move the center of the radial effect and change its colors as well as

modes at the same time.

int g_dir;
float g_posX, g_posY;
const float g_speed = 1.25;

void InitEffect()
{

}

void PreRenderEffect()
{
 switch(g_dir)
 {
 case 0: //left
 if(g_posX <= 0.0) {
 g_dir++;
 g_posX = 0.0;
 } else {
 g_posX -= g_speed;
 }
 break;

 case 1: //up
 if(g_posY <= 0.0) {
 g_dir++;
 g_posY = 0.0;
 SetNextMode();
 } else {
 g_posY -= g_speed;
 }
 break;
 case 2: //right
 if(g_posX > (float)GetMatrixWidth()) {
 g_dir++;
 g_posX = (float)GetMatrixWidth();
 } else {
 g_posX += g_speed;
 }
 break;
 case 3: //down
 default:
 if(g_posY >= (float)GetMatrixHeight()) {
 g_dir = 0;
 g_posY = (float)GetMatrixHeight();
 } else {
 g_posY += g_speed;
 }
 }//switch

MADRIX 2 Script Help and Manual270

© 2014 inoage GmbH

 SetPixelCenter((int)g_posX, (int)g_posY);
}

void SetNextMode()
{
 if(GetEffectMode() == EFFECT_CIRCLE)
 SetEffectMode(EFFECT_RADAR);
 else if(GetEffectMode() == EFFECT_RADAR)
 SetEffectMode(EFFECT_HELIX);
 else {
 SetEffectMode(EFFECT_CIRCLE);
 if(GetCurve() == 1)
 SetCurve(CURVE_SIN);
 else
 SetCurve(CURVE_PHASE);
 }

}

void PostRenderEffect()
{

}

5.3.16 SCE Shapes

Functions Provided By SCE Shapes

Function Description

void SetColorMode(color colmode) Sets the effect color mode. See the color mode table below for
further details.

color GetColorMode() Returns the current color mode. See the color mode table below
for further details.

void SetShape(int shape) Sets the shape of the objects. See below for details.

int GetShape() Returns the currently used shapes of the objects. See below for
details.

void SetCount(int fade) Sets the number of shapes which shall be created.

int GetCount() Returns the number of shapes currently used.

void SetVectorWidth(float vWidth) Sets the size of the shapes in percent in relation to the matrix size.
A value of 0.01 means a width of 1%, whereas 1.0 means 100%.
Valid values range from 0.01 to 99.99. The given value is related
to the smaller dimension of the matrix. So, if there is a matrix with
a size of 5x20 pixels, 5 is used. And as you can see, it is possible
to set a much greater value then the smaller dimension.

float GetVectorWidth() Returns the width of the shapes as percentage. See
Se tVectorW idth for further details.

void SetPixelWidth(int iWidth) Sets the size of the objects in pixels. Valid values range from 1 to
9999.

Macros For Effects 271

© 2014 inoage GmbH

int GetPixelWidth() Returns the size of the objects in pixels.

void SetVectorBorder(float vBorder) Sets the border width of the shapes in percent. This value relates
to the current width of the shapes. E.g. if the current width of the
shapes is 10 pixels, a value of 0.5 would mean that the border
gets a width of 5 pixels. Valid values range from 0.01 to 99.99. 1.0
represents 100% of the shapes' width.

float GetVectorBorder() Returns the border width of the shapes in percent relative to the
shapes width. See Se tVectorBorde r for further details.

void SetPixelBorder(int iBorder) Sets the current border thickness of the shapes in pixels.

int GetPixelBorder() Returns the current border thickness of the shapes in pixels.

void SetColor(int idx, color c) Sets the color with the specified index to the given color value. If
the index is out of range, nothing happens.

color GetColor(int idx) Returns the color with the specified index in the color table. If the
index is out of range, b lack is returned.

int GetColorCount() Returns the current number of colors in the color table.

void AddColor(int idx, color c) Adds another color to the color table at the specified index
position. If the index is lower or equal to 0, the new color is added
to the first position. If the index is greater than the current number
of colors, the new color is added at the end.

 void RemoveColor(int idx) Removes the color located at the specified index. If the given
index is out of range, nothing happens. The Color Table of this
effect needs to include at least 1 entry.

This Effect uses the Color Table. Learn more about Using Colors.

MADRIX 2 Script Help and Manual272

© 2014 inoage GmbH

Deprecated Functions

Deprecated functions are outdated functions and should not be used anymore.

Function Description

void SetDrawMode(int mode) Sets the current draw mode the effect should use. Please note:
This function is deprecated and may be removed in one of the
next releases. Use SetShape instead.

int GetDrawMode() Returns the current draw mode. Please note: This function is
deprecated and may be removed in one of the next releases. Use
GetShape instead.

Color Modes

This effect uses various color modes. With the function SetColorMode it is possible to change

them. The following values can be used as parameter:

Value Description

CM_LOOP Sets the loop mode. In this mode the effect loops through the
colortable to select the colors for new shapes.

CM_SHUFFLE Sets the shuffle mode. In this mode the effect selects the color for
a new shape from the color table by random access.

CM_RANDOM Sets the random mode. In this mode the colors for the shapes are
generated by random but 10% of the colors will be generated by
random access to the color table.

Shapes

This effect uses various geometrical figures. With the function SetShape it is possible to change

them. The following values can be used as parameter:

Macros For Effects 273

© 2014 inoage GmbH

Value Description

DRAW_CROSS Selects the cross for drawing.

DRAW_CROSS_IMPLODE Selects the imploding cross for drawing.

DRAW_CROSS_EXPLODE Selects the exploding cross for drawing.

DRAW_CIRCLE Selects the unfilled circle for drawing.

DRAW_CIRCLE_IMPLODE Selects the imploding circle for drawing.

DRAW_CIRCLE_EXPLODE Selects the exploding circles for drawing.

DRAW_RECT Selects the unfilled rectangle for drawing.

DRAW_RECT_IMPLODE Selects the imploding rectangle for drawing.

DRAW_RECT_EXPLODE Selects the exploding rectangle for drawing.

DRAW_STAR Selects the star for drawing.

DRAW_STAR_IMPLODE Selects the imploding star for drawing.

DRAW_STAR_EXPLODE Selects the exploding star for drawing.

DRAW_DIAMOND Selects the diamond shape for drawing.

DRAW_DIAMOND_IMPLODE Selects the imploding diamond for drawing.

DRAW_DIAMOND_EXPLODE Selects the exploding diamond for drawing.

FILL_CIRCLE Selects the filled circle for drawing.

FILL_CIRCLE_IMPLODE Selects the filled imploding circle for drawing.

FILL_CIRCLE_EXPLODE Selects the filled exploding circle for drawing.

FILL_RECT Selects the filled rectangle for drawing.

FILL_RECT_IMPLODE Selects the filled imploding rectangle for drawing.

FILL_RECT_EXPLODE Selects the filled exploding rectangle for drawing.

FILL_DIAMOND Selects the filled diamond shape for drawing.

FILL_DIAMOND_IMPLODE Selects the filled imploding diamond for drawing.

FILL_DIAMOND_EXPLODE Selects the filled exploding diamond shape for drawing.

DRAW_RANDOM Selects random shapes for drawing.

MADRIX 2 Script Help and Manual274

© 2014 inoage GmbH

5.3.17 SCE Starfield

Functions Provided By SCE Starfield

Function Description

void SetBpm(int bpm) Sets the speed of the effect in BPM. Valid values range from 0 to
9999. Default value is 1500.

int GetBpm() Returns the current speed of the effect in BPM.

void SetLength(int size) Sets the length of the effect. Valid values range from 1 to 100. The
default value is 20.

int GetLength() Returns the currently set length.

void SetCount(int count) Sets the number of objects. Valid values range from 0 to 100. The
default value is 50.

int GetCount() Returns the number of objects.

void SetWidth(int width) Sets the size of the objects. Valid values range from 1 to 100. The
default value is 10.

int GetWidth() Returns the size of the objects.

void SetDepth(int depth) Sets the depth effect. Valid values range from 1 to 100. The
default value is 80.

int GetDepth() Returns the currently set depth.

void SetRotation(int rotation) Sets the amount of rotation. Valid values range from -100 to 100.
The default value is 0.

int GetRotation() Returns the currently set amount of rotation.

void SetDirection(int dir) Sets the direction of the effect. See below for details.

int GetDirection() Returns the currently set direction.

void SetColorMode(int mode) Sets the color mode of the Color Table. See below for details.

int GetColorMode() Returns the currently set color mode.

void SetShape(int shape) Sets the shape of the objects. See below for details.

int GetShape() Returns the currently set shape of objects.

void SetColor(int idx, color c) Sets the color at the specified index in the Color Table dialog. If
idx is out of range, nothing happens.

color GetColor(int idx) Returns the color of the specified index in the color table. If the
index is out of range, b lack is returned.

int GetColorCount() Returns the number of colors in the color table.

void AddColor(int idx, color c) Adds another color to the color table at the specified index
position. If the index is lower or equal to 0, the new color is added
to the first position. If the index is greater than the current number
of colors, the new color is added at the end.

void RemoveColor(int idx) Removes the color located at the specified index. If the given
index is out of range, nothing happens. The Color Table of this
effect needs to include at least 1 entry.

Macros For Effects 275

© 2014 inoage GmbH

This Effect uses the Color Table. Learn more about Using Colors.

Shapes

This effect uses various geometrical figures. The function SetShape can be used to change them.

The following values can be used as parameter:

Value Description

DRAW_RECT Selects the unfilled rectangle for drawing.

FILL_RECT Selects the filled rectangle for drawing.

DRAW_CIRCLE Selects the unfilled circle for drawing.

FILL_CIRCLE Selects the filled circle for drawing.

DRAW_CROSS Selects the cross for drawing.

DRAW_STAR Selects the star for drawing.

DRAW_DIAMOND Selects the unfilled diamond for drawing.

FILL_DIAMOND Selects the filled diamond for drawing.

DRAW_RANDOM Selects random shapes for drawing.

Effect Direction

The "stars" can move outwards or inwards. To set those directions, use the function SetDirec t ion

with the following values:

Value Description

DIR_OUTWARDS Sets direction to "outwards".

DIR_INWARDS Sets direction to "inwards".

MADRIX 2 Script Help and Manual276

© 2014 inoage GmbH

Color Modes

This effect uses various color modes. The function SetColorMode can be used to change them.

The following values can be used as parameter:

Value Description

CM_LOOP Sets the loop mode. In this mode the effect loops through the
colortable to select the colors for new shapes.

CM_SHUFFLE Sets the shuffle mode. In this mode the effect selects the color for
a new shape from the color table by random access.

CM_RANDOM Sets the random mode. In this mode the colors for the shapes are
generated by random but 10% of the colors will be generated by
random access to the color table.

5.3.18 SCE Ticker

Functions Provided By SCE Ticker

Function Description

void SetText(string text) Sets the text the ticker shows.

string GetText() Retrieves the text shown by the ticker effect.

void SetDirection(int direction) Sets the direction of the movement. Allowed are all DIR_ values
described in the summary. Use DIR_NONE to stop the movement.

int GetDirection() Returns the currently set direction.

void SetPixelTextOffset(int x, int y) Set the text offset in pixel coordinates.

int GetPixelTextOffsetX() Returns the x coordinate of the text offset using pixel coordinates.

int GetPixelTextOffsetY() Returns the y coordinate of the text offset using pixel coordinates.

void SetVectorTextOffset(float x, float y) Sets text offset using relative coordinates.

float GetVectorTextOffsetX() Returns the x coordinate of the text offset using relative
coordinates.

float GetVectorTextOffsetY() Returns the y coordinate of the text offset using relative
coordinates.

int GetPixelTextWidth() Returns the width of the text using pixel coordinates.

int GetPixelTextHeight() Returns the height of the text using pixel coordinates.

float GetVectorTextWidth() Returns the width of the text using relative coordinates.

float GetVectorTextHeight() Returns the height of the text using relative coordinates.

int GetPixelTextPosX() Returns the current x coordinate of the position of the text using
pixel coordinates.

Macros For Effects 277

© 2014 inoage GmbH

int GetPixelTextPosY() Returns the current y coordinate of the position of the text using
pixel coordinates.

float GetVectorTextPosX() Returns the current x coordinate of the position of the text using
vector coordinates.

float GetVectorTextPosY() Returns the current y coordinate of the position of the text using
vector coordinates.

void SetTextColor(color col) Sets the text color.

color GetTextColor() Retrieves the text color.

void SetBpm(int bpm) Sets the BPM value. Valid values range from 0 to 9999.

int GetBpm() Returns the currently used BPM value.

void SetMode(int mode) Sets the text mode. See below for further details.

int GetMode() Returns the current text mode. See below for further details.

viod SetReverseSentence(int enable) Disables "Reverse Sentence" if enable is set to fa lse. Otherwise,
use true.

int GetReverseSentence() Returns true if "Reverse Sentence" is active, otherwise fa lse is
returned.

void SetReverseWords(int enable) Disables "Reverse Words" if enable is set to fa lse. Otherwise, use
true.

int GetReverseWords() Returns true if "Reverse Words" is active, otherwise fa lse is
returned.

void SetRotation(int angle) Rotates the text output by multiples of 90°. Valid values for angle
are 0, 90, 180, and 270.

int GetRotation() Returns the current rotation.

void SetContinuous(int enable) Enables or disables "Cont. Text" mode. If enable is fa lse, it will be
disabled. Otherwise, use true.

int GetContinuous() Returns true if "Cont. Text" mode is enabled, otherwise fa lse.

void SetSmooth(int enable) Enables or disables the "smooth" mode. If enable is fa lse, it will be
disabled. Otherwise, use true.

int GetSmooth() Returns true if "smooth" mode is enabled, otherwise fa lse.

int GetFontWidth() Returns the width of the currently used font.

void SetFontWidth(int width) Sets the width of the font.

int GetFontHeight() Returns the height of currently used font.

void SetFontHeight(int height) Sets the height of the font.

int GetFontItalic() Returns if the font used is in italics.

void SetFontItalic(int value) Sets the font in italics (va lue = 1) or not (va lue = 0).

int GetFontUnderline() Returns if the currently used font is underlined.

void SetFontUnderline(int value) Sets underlining for the font (va lue = 1) or not (va lue = 0).

int GetFontStrikeOut() Returns if the a strikeout font is used.

void SetFontStrikeOut(int value) Sets strikeout for the font (va lue = 1) or not (va lue = 0).

int GetFontWeight() Returns the weight of the currently used font.

MADRIX 2 Script Help and Manual278

© 2014 inoage GmbH

void SetFontWeight(int value) Sets the weight of the font. Valid values for va lue range from 0 to
1000.

string GetFontFaceName() Returns the name of the font currently in use.

void SetFontFaceName(string) Sets which font to use. A maximum of 31 characters is allowed for
str ing. Example: SetFontFaceName("Arial");

Text Modes

The ticker effect supports different modes. The given text can be interpreted as a whole

sentence, as single words, or even single characters. With the function SetMode it is possible to

set the mode with the following parameters:

Value Description

MODE_SENTENCE Sets the sentence mode.

MODE_WORD Sets the word mode.

MODE_CHAR Sets the character mode.

Deprecated Functions

Deprecated functions are outdated functions and should not be used anymore.

Function/Define Description

void SetTextMode(int mode) Use SetMode instead.

void GetTextMode(int mode) Use GetMode instead.

void SetContinous(int enable) Use SetContinuous instead.

int GetContinous() Use GetContinuous instead.

void SetReverseWord(int enable) Use SetReverseWords instead.

int GetReverseWord() Use GetReverseWords instead.

TM_SENTENCE Use MODE_SENTENCE instead.

TM_WORD Use MODE_WORD instead.

TM_CHAR Use MODE_CHAR instead.

Macros For Effects 279

© 2014 inoage GmbH

Full Example 1

The following example writes the current time onto the matrix. Furthermore, it moves the text from

side to side.

time g_time = GetTime();

void InitEffect()
{
 SetText("Hallo Dresden");
 SetDirection(DIR_UP);
}

void PreRenderEffect()
{
 time t = GetTime();

 int diff = t.sec - g_time.sec;

 if(diff > 0 || diff < 0) {
 g_time = t;
 string s;
 if(g_time.hour < 10) {
 s += "0";
 }
 s += (string)g_time.hour;
 s += ":";

 if(g_time.min < 10)
 s += "0";
 s += (string)g_time.min;

 s += ".";

 if(g_time.sec < 10)
 s += "0";
 s += (string)g_time.sec;

 SetText(s);
 }

 if(GetDirection() == DIR_LEFT) {
 if(GetPixelTextPosX() < 0) {
 SetDirection(DIR_RIGHT);
 }
 } else if(GetDirection() == DIR_RIGHT) {
 if(GetPixelTextPosX() > GetMatrixWidth()- GetPixelTextWidth()) {
 SetDirection(DIR_LEFT);
 }
 } else {
 SetDirection(DIR_LEFT);
 }
}

MADRIX 2 Script Help and Manual280

© 2014 inoage GmbH

void PostRenderEffect()
{
 int i = 128;
 ClearAlpha(i);
 WriteText(GetText());
}

int compareTimes(time t1, time t2)
{
 int result = 0;
 if(t1.hour < t2.hour)
 result = -1;
 else if(t1.hour > t2.hour)
 result = 1;
 else {
 if(t1.min < t2.min)
 result = -1;
 else if(t1.min > t2.min)
 result = 1;
 else {
 if(t1.sec < t2.sec)
 result = -1;
 else if(t1.sec > t2.sec)
 result = 1;
 }

 }

 return(result);
}

Full Example 2

This example includes SetText and GetTime.

»Full Example 2

Example 3

This example creates a digital clock and therefore displays the current time using the SCE Ticker

Effect.

@scriptname="macro clock with sce_ticker";
@author="sven";
@version="1.0";
@description="write the current time into the ticker text fields";

void InitEffect()

Macros For Effects 281

© 2014 inoage GmbH

{

}

void PreRenderEffect()
{
 time t = GetTime();
 SetText(ZeroString(t.hour) + ":" + ZeroString(t.min) + ":" + ZeroString(t.sec));
}

void PostRenderEffect()
{
}

void MatrixSizeChanged()
{
InitEffect();

}

string ZeroString(int value)
{
 if(value<10)
 return "0"+(string)value;
 return (string)value;
}

5.3.19 SCE Video

Functions Provided By SCE Video

The following table provides an overview over all functions the effect provides.

Please note: Certain functions may not work due to restrictions and limitations of the video

codec. (E.g. the Forward Backward Loop is only available for the QuickTime codec format.)

Function Description

void SetDirection(int) Sets the movement direction. Allowed are all directions described

by the DIR_ constants. Set DIR_NONE to stop the movement.

int GetDirection() Gets the current movement direction. Returns DIR_NONE if the
movement has been stopped.

int GetPixelImagePositionX() Returns the current absolute x pixel coordinate of the video.

int GetPixelImagePositionY() Returns the current absolute y pixel coordinate of the video.

float GetVectorImagePositionX() Returns the current relative x coordinate of the video.

float GetVectorImagePositionY() Returns the current relative y coordinate of the video.

MADRIX 2 Script Help and Manual282

© 2014 inoage GmbH

void SetPixelImagePosition(int x, int y) Sets the position of the video in absolute pixel coordinates.

void SetVectorImagePosition(float x,
float y)

Sets the position of the video using relative coordinates.

int GetPixelImageWidth() Returns the width of the current displayed video as absolute pixel
value.

int GetPixelImageHeight() Returns the height of the current displayed video as absolute
pixel value.

float GetVectorImageWidth() Returns the width of the currently displayed video relative to the
settings of the current matrix.

float GetVectorImageHeight() Returns the height of the currently displayed video relative to the
settings of the current matrix.

void SetStretch(int enable) If enable is fa lse, stretch will be disabled. Otherwise, it will be
enabled.

int GetStretch() Returns true if stretch is currently enabled, otherwise fa lse.

void SetTile(int enable) Disables tile mode of the bitmap effect if enable is set to fa lse .
Otherwise, tile mode will be enabled.

int GetTile() Returns true if the tile mode of the bitmap effect is currently
enabled, otherwise fa lse.

void SetGrey(int enable) Disables grayscale mode if enable is set to fa lse . Otherwise, it will
be enabled.

int GetGrey() Returns true if grayscale mode is currently active, otherwise fa lse
.

void SetRgbToRgbw(int enable) Disables the RGB-to-RGBW mode if enable is set to fa lse .
Otherwise, it will be enabled.

int GetRgbToRgbw() Returns true if the RGB-to-RGBW mode is enabled, otherwise
fa lse.

void SetBpm(int bpm) Sets the speed for the image movement. bpm must be within a
range of 0 to 9999 BPM. E.g. a value of 60 means that it is moved
one pixel per second into the given direction.

int GetBpm() Returns the speed for the image movement in BPM.

void SetFilterColor(color col) Sets the filter color for the effect. Please note that the alpha
value of the color structure is not used by this effect.

color GetFilterColor() Returns the current filter color. Please note that the alpha value is
not used and should be ignored.

void SetAutostart(int enable) Disables auto start if enable is set to fa lse . Otherwise, auto start
is enabled.

int GetAutostart() Returns true if auto start is enabled, otherwise fa lse.

void SetLoop(int mode) Sets the video playback mode. Valid values are: NO_LOOP (for

no loop), F_LOOP (for forward loop), and FB_LOOP (for

forward and backward loop).

int GetLoop() Returns true if loop mode is enabled.

int GetVideoLoaded() Returns true if a video is already loaded.

int GetCapturing() Returns true if a capture device, e.g. a web-cam, has been
selected for capturing.

Macros For Effects 283

© 2014 inoage GmbH

int GetVideoRunning() Returns true if video or capture playback is active, otherwise
fa lse.

void StartVideo() Starts video playback. If a capture device has been selected,
capturing is started.

void StopVideo() Stops video playing. If a capture device has been selected,
capturing is stopped.

void SeekVideo(int secs) Skips some seconds of the current video. secs may be a negative
value in order to go back.

time GetVideoLength() Returns the length of the video as time structure. The structure is
filled up with the hours, minutes, and seconds. If no video is
loaded or capturing is active, 0 is returned.

void SetVideoTime(time t) Sets the current time position of the video playback. If no video
is loaded, nothing happens. See below for further details.

time GetVideoTime() Returns the current time of the video playback.

void SetRotation(int angle) Rotates the video output by multiples of 90°. Valid values for
angle are 0, 90, 180, and 270.

int GetRotation() Returns the current rotation of the video output.

void StartVideoBackward() Starts playing the video backwards. Only available with
QuickTime video files. If a capture device has been selected, this
function has no effect.

void SetVideoStartTime(time t) Sets the start time of the video. The video starts playing from this
position.

time GetVideoStartTime() Returns the position at which the video starts playing.

void SetVideoEndTime(time t) Sets the end time of the video. The video ends playing at this
position.

time GetVideoEndTime() Returns the position at which the video stops playing.

void SetVideoPlaySpeed(float speed) Sets the playback speed of the video. Values between 0.1 and
2.0 are allowed. E.g. the value 2.0 means that the video will be
running 2x faster than the original speed.

float GetVideoPlaySpeed() Returns the current video playback speed.

void SetVideoAspectRatio(int mode) Sets the video aspect ratio. Valid values for m ode are:

ASPECT_ORIG (for the video original aspect ratio),

ASPECT_MATRIX (for the current matrix aspect ratio),

ASPECT_4_3 (for 4:3), and ASPECT_16_9 (for an aspect

ratio of 16:9).

This Effect uses the Color Picker. Learn more about Using Colors.

MADRIX 2 Script Help and Manual284

© 2014 inoage GmbH

Deprecated Functions

Deprecated functions are outdated functions and should not be used anymore.

Function Description

void SetMoveSpeed(float speed) Sets the speed for the video movement. The speed must be
given in frames per second. E.g. 2 means that the video will be
moved 2 pixels per second. The range is 0 to 166. Please note:
This function is deprecated and may be removed in one of the
next releases. Use SetBpm instead.

float GetMoveSpeed() Returns the speed for the video movement in frames per
second. Please note: This function is deprecated and may be
removed in one of the next releases. Use GetBpm instead.

Setting the Time for Video Playback

If a video is loaded that has a length of 2:45:00 the following source code would set the playback

position to 1:25:30.

time t = {1, 25, 30};
SetVideoTime(t);

Please note: If the given time is higher than the length of the video, the time is set to the end of

the video.

(Description)

Full Example

The following example moves the video side to side on the matrix.

void InitEffect()
{

}

void PreRenderEffect()
{
 if(GetDirection() == DIR_LEFT)
 {
 if(GetVectorImagePositionX() <= 0.0)
 {
 SetVectorImagePosition(0.0, GetVectorImagePositionY());
 SetDirection(DIR_RIGHT);
 }

Macros For Effects 285

© 2014 inoage GmbH

 }
 else if(GetDirection() == DIR_RIGHT)
 {
 if(GetVectorImagePositionX() + GetVectorImageWidth() >= 1.0)
 {
 SetVectorImagePosition(1.0 - GetVectorImageWidth(), GetVectorImagePositionY());
 SetDirection(DIR_LEFT);
 }
 }
 else
 {
 SetDirection(DIR_LEFT);
 }

}

void PostRenderEffect()
{

}

5.3.20 SCE Wave

Functions Provided By SCE Wave

Function Description

void SetBpm(int bpm) Sets the speed of the effect in BPM. Valid values range from 0 to
9999 BPM.

int GetBpm() Returns the current effect speed in BPM.

void SetColor(color col) Sets the color for the effect.

color GetColor() Returns the current effect color.

void SetDirection(int dir) Sets the direction for the effect. Allowed are all DIR_ values

described in the table of constants, except DIR_NONE.

int GetDirection() Returns the current effect direction.

void SetPixelLength(int len) Sets the wave length in pixels. Valid values range from 2 to 150.

int GetPixelLength() Returns the wave length in pixels.

void SetVectorLength(float len) Sets the wave length relative to the current matrix size and effect
direction. See below for further details.

float GetVectorLength() Returns the current wave length relative to the current matrix size
and effect direction. See below for further details.

void SetEffectMode(int mode) Sets the wave mode. See below for further details and valid
values for m ode .

int GetEffectMode() Returns the current wave mode. See below for further details.

void SetPeak(int peak) Sets the peak value in triangle mode. Valid values range from 0 to
100.

MADRIX 2 Script Help and Manual286

© 2014 inoage GmbH

Function Description

int GetPeak() Returs the value set for the peak in triangle mode.

This Effect uses the Color Picker. Learn more about Using Colors.

Deprecated Functions

Deprecated functions are outdated functions and should not be used anymore.

Function Description

void SetSpeed(int speed) Sets the effect speed. Valid values range from 0 to 166 FPS.
Please note: This function is deprecated and may be removed in
one of the next releases. Use SetBpm instead.

int GetSpeed() Returns the current effect speed in frames per second. Please
note: This function is deprecated and may be removed in one of
the next releases. Use GetBpm instead.

Using Relative Values For The Length

The relative values SetVec torLength uses relate to the actual direction and matrix size. Vertical

and horizontal scroll directions are simple to understand. For horizontal (left, right) movements,

the value relates to the matrix width. And for vertical movements (up, down), the value relates to

the matrix height.

For diagonal movements, e.g. to the upper left corner, the value relates to the greater value of

either matrix width or height. For example, the matrix has a width of 40 pixels and a height of 55

pixes. Then, the given value relates to the height of 55 pixels. This is due to the fact that it fits

better than using the extent of the matrix diagonal.

Macros For Effects 287

© 2014 inoage GmbH

Wave Modes

The wave effect provides different algorithms to calculate a wave, such as a sin curve or a

sawtooth wave. Using the SetEffec tMode it is possible to set them. The following table provides

the possible parameters of this function:

Value Description

EFFECT_ABS_SINE Uses absolute values of a sin wave to describe a
wave.

EFFECT_SINE_WAVE Uses a sin wave.

EFFECT_SAWTOOTH_UP Uses an upward sawtooth wave to describe the
wave.

EFFECT_SAWTOOTH_DOWN Uses a downward sawtooth wave to describe the
wave.

EFFECT_TRIANGLE Uses a triangle curve as to describe the wave.

5.4 S2L Sound2Light Effects

5.4.1 S2L Equalizer

Functions Provided By S2L Equalizer

The following table provides an overview over all functions the effect provides:

Function Description

void SetBpm(int bpm) Sets the speed of the effect in BPM. Valid values range from 0 to
9999 BPM.

int GetBpm() Returns the current effect speed in BPM.

void SetCrossed(int enable) Enables cross-direction mode if enable is set to true, otherwise it is
disabled.

int GetCrossed() Returns true if cross-direction mode is enabled, otherwise fa lse is
returned.

void SetDirection(int direction) Sets the direction of the effect. Valid values for d irection are
DIR_LEFT, DIR_RIGHT, DIR_UP, and DIR_DOWN.

int GetDirection() Returns the current direction.

void SetFade(int fade) Sets the fade value. Valid values range from 1 to 100.

int GetFade() Returns the current fade value.

void SetAmplify(int amp) Sets the amplification value (Amplify). Valid values range from 0
to 100.

MADRIX 2 Script Help and Manual288

© 2014 inoage GmbH

Function Description

int GetAmplify() Returns the current amplify value.

void SetBandCount(int count) Sets the number of equalizer bands to display. Valid values range
from 1 to 511.

int GetBandCount() Returns the current number of equalizer bands.

void SetInvert(int enable) Disables inversion mode ("Invert") if enable is set to fa lse,
otherwise it will be enabled.

int GetInvert() Returns true if "Invert" is enabled, otherwise fa lse.

void SetMirror(int enable) Disables "Mirror" mode if enable is set to fa lse, otherwise it will be
enabled.

int GetMirror() Returns true if "Mirror" mode is enabled, otherwise fa lse.

void SetViewLog(int enable) Disables "View Log" if enable is fa lse . Otherwise, it will be enabled.

int GetViewLog() Returns true if "View Log" is enabled, otherwise fa lse.

void SetPushHF(int enable) Disables "Push HF" (amplification of high frequencies) if enable is
set to fa lse . Otherwise, it will be enabled.

int GetPushHF() Returns true if "Push HF" is enabled, otherwise fa lse.

void SetDoubleInwards(int enable) Disables the doubled, inward-oriented equalizer if enable is set to
fa lse . Otherwise, it will be enabled.

int GetDoubleInwards() Returns true if "Double Inwards" is enabled, otherwise fa lse.

void SetDoubleOutwards(int enable) Disables the doubled, outward-oriented equalizer if enable is set
to fa lse . Otherwise, it will be enabled.

int GetDoubleOutwards() Returns true if "Double Outwards" is enabled, otherwise fa lse.

void SetMonochrome(int enable) Enables or disables monochrome mode for the equalizer.

int GetMonochrome() Returns true if the equalizer is set to monochrome mode,
otherwise fa lse.

void SetDrawMode(int mode) Sets the draw mode for the effect. See below for further details.

int GetDrawMode() Returns the currently selected draw mode. See below for further
details.

void SetBandMode(int state) Enables (sta te set to 1) or disables (sta te set to 0) band mode for
the effect.

int GetBandMode() Retrieves if band mode is activated (1) or not (0).

void SetColor(int index, color c) Sets the color at the specified index in the Color Ramp dialog. If
index is out of range, nothing happens.

color GetColor(int index) Returns the color with the specified index in the Color Ramp
dialog. If index is out of range, b lack is returned.

int GetColorCount() Returns the number of colors used in the Color Ramp.

int SetColorPosition(int index, float
position)

Sets the color of the given index to a new position and returns the
new index. Valid values for position range from 0.01 to 0.99. The
first and last color are not allowed to be moved!

float GetColorPosition(int index) Returns the position of a color at the specified index.

void SetColorFade(int index, int fade) Disables or enables color fade for the color at the specified index
by either using 0 (Off) or 1 (On) for fade.

Macros For Effects 289

© 2014 inoage GmbH

Function Description

int GetColorFade(int index) Returns if color fade is set for the color at the specified index.

void FadeAllColors() Enables color fade for all colors in the Color Ramp.

void FadeNoneColors() Disables color fade for all colors in the Color Ramp.

void SetUniformDistances() Sets uniform distances between each color in the Color Ramp.

void InvertColorPositions() Inverts the positions of the colors in the Color Ramp.

void InvertColors() Inverts every single color in the Color Ramp.

void AddColor(color c, float position, int
index)

Adds another color to the Color Ramp at the specified position.
Valid values for position range from 0.01 to 0.99. If the index is
lower or equal to 0, the new color is added to the first position. If
the index is greater than the current number of colors, the new
color is added at the end.

void RemoveColor(int index) Removes the color at the specified index. If the given index is out
of range, nothing happens.

This Effect uses the Color Ramp dialog. Learn more about Using Colors.

Deprecated Functions

Deprecated functions are outdated functions and should not be used anymore.

Function Description

void SetSpeed(int speed) Sets the speed of the effect in FPS. Valid values range from 0 to
166. Please note: This function is deprecated and may be
removed in one of the next releases. Use SetBpm instead.

float GetSpeed() Returns the current effect speed in FPS. Please note: This
function is deprecated and may be removed in one of the next
releases. Use GetBpm instead.

Draw Modes

MADRIX 2 Script Help and Manual290

© 2014 inoage GmbH

This effect uses various modes. With the function SetDraw Mode it is possible to change them. The

following values can be used as parameter:

Value Description

MODE_BAR Selects the normal bar mode.

MODE_RADIAL Selects the unfilled radial mode.

MODE_RADIAL_LINE Selects the filled radial mode without an outline.

MODE_RADIAL_OUTLINE Selects the radial mode with an outline.

MODE_RADIAL_DOT Selects the radial mode drawing a dotted outline.

Full Example

The following example combines Music2Light data with a Sound2Light effect. It sets the number of

bands according to the current tonality.

int t = 10;

void InitEffect()
{
 SetBandCount(t);
 SetCrossed(true);
 SetDoubleInwards(true);
}

void PreRenderEffect()
{
 t = t / 2 + GetTonality() / 2;
 if (t > 1)
 SetBandCount(t * t);
}

void PostRenderEffect()
{
}

Macros For Effects 291

© 2014 inoage GmbH

5.4.2 S2L EQ Drops

Functions Provided By S2L EQ Drops

The following table provides an overview over all functions the effect provides:

Function Description

void SetDirection(int dir) Set the direction of the effect. Valid values are DIR_UP,
DIR_DOWN, DIR_LEFT and DIR_RIGHT.

int GetDirection() Returns the current direction.

void SetBpm(int bpm) Sets the speed of the effect in BPM. Valid values range from 0 to
9999 BPM.

int GetBpm() Returns the current effect speed in BPM.

void SetColor(color col) Sets the effect color. Please note that the alpha channel is not
used by this effect.

color GetColor() Returns the currently set color. Please note that the alpha
channel is not used and should be ignored.

void SetLength(int len) Sets the length of the drops. Valid values range from 1 to 100.

int GetLength() Returns the current length of drops.

void SetSens(int sens) Sets the sensitivity value for the effect. Valid values range from 0
to 100. If "Use Level (db)" is enabled, this function has no effect
because instead of the "Sensitivity" value, the "Amplify" value will
be used.

int GetSens() Returns the current sensitivity value of the effect. If "Use Level
(db)" is enabled, this function returns 0 because not the
"Sensitivity" value is used by the effect, but the amplify value.

void SetAmplify(int amp) Sets the amplification value of the effect. Valid values range from
0 to 100. This function has no effect if "Use Level (db)" is disabled.
In that case the "Sensitivity" value is used by the effect.

int GetAmplify() Returns the currently set "Amplify" value. This function returns 0 if
"Use Level (db)" is disabled. In that case the "Sensitivity" value is
used by the effect.

void SetBandCount(int cnt) Sets the number of "Bands" to be displayed. Valid values range
from 1 to 511.

int GetBandCount() Returns the current number of "Bands".

void SetInvert(int enable) Disables "Invert" if enable is set to fa lse . Otherwise, it will be
enabled.

int GetInvert() Returns true if "Invert" is enabled, otherwise fa lse.

void SetMirror(int enable) Disables "Mirror" mode if enable is fa lse . Otherwise it will be
enabled.

int GetMirror() Returns true if "Mirror" is enabled, otherwise fa lse.

void SetUseLevel(int enable) Disables "Use Level (db)" if enable is set to fa lse . Otherwise, it will
be enabled.

int GetUseLevel() Returns true if "Use Level (db)" is enabled, otherwise fa lse.

MADRIX 2 Script Help and Manual292

© 2014 inoage GmbH

This Effect uses the Color Picker. Learn more about Using Colors.

Deprecated Functions

Deprecated functions are outdated functions and should not be used anymore.

Function Description

void SetSpeed(int speed) Sets the speed of the effect in FPS. Valid values range from 0 to
166. Please note: This function is deprecated and may be
removed in one of the next releases. Use SetBpm instead.

float GetSpeed() Returns the current effect speed in FPS. Please note: This
function is deprecated and may be removed in one of the next
releases. Use GetBpm instead.

5.4.3 S2L EQ Shapes

Functions Provided By S2L EQ Shapes

The following table provides an overview over all functions the effect provides:

Function Description

void SetColorMode(color colmode) Sets the color mode for the effect. See the table below for further
details.

color GetColorMode() Returns the currently set color mode. See the table below for
further details.

void SetShape(int shape) Sets the shape of the objects. See below for details.

int GetShape() Returns the currently used shape of the objects. See below for
details.

void SetFade(int fade) Sets the fade value in BPM. Valid values range from 1 to 3000
BPM.

int GetFade() Returns the currently used fade value.

void SetSens(int sens) Set the "Sensitivity" value for the effect. Valid values range from 0
to 100.

int GetSens() Returns the current "Sensitivity" value of the effect.

Macros For Effects 293

© 2014 inoage GmbH

void SetVectorWidth(float vWidth) Sets the size of the shapes in percent referring to the matrix size.
Valid values range from 0.01 to 99.99. The given value is related
to the smaller dimension of the matrix. E.g. if there is a matrix
with a size of 5x20 pixels, the given value means n% of 5.
Whereas 1.0 means 100%. As you can see, it is possible to set a
much greater value then the smaller dimension.

float GetVectorWidth() Returns the width of the shapes in percent. See Se tVectorW idth for
further details.

void SetPixelWidth(int iWidth) Sets the size of the objects in pixels. Valid values range from 1 to
9999.

int GetPixelWidth() Returns the size of the objects in pixels.

void SetVectorPitch(float vPitch) Sets the pitch of the shapes in percent in relation to the matrix
size. Valid values range from 0.01 to 99.99. The given value is
related to the smaller dimension of the matrix. E.g. if there is a
matrix with a size of 5x20 pixels, the given value means n% of 5.
Whereas 1.0 means 100%. As you can see, it is possible to set a
much greater value then the smaller dimension.

float GetVectorPitch() Returns the pitch of the shapes in percent. See Se tVectorP itch for
further details.

void SetPixelPitch(int iPitch) Sets the pitch between two shapes in pixels. Valid values range
from 1 to 9999.

int GetPixelPitch() Returns the currently set pitch.

void SetVectorBorder(float vBorder) Sets the border width of the shapes in percent. This value relates
to the current width of the shapes. E.g. with a current width of 10
pixels, a value of 0.5 would mean that a border with 5 pixels will
be used. Valid values range from 0.01 to 99.99. A value of 1.0
means 100% of the shapes' width.

float GetVectorBorder() Returns the border width of the shapes in percent relative to the
shapes width. See Se tVectorBorde r for further details.

void SetPixelBorder(int iBorder) Sets the current border thickness of the shapes in pixels.

int GetPixelBorder() Returns the current border thickness of the shapes in pixels.

void SetAmplify(int amp) Sets the "Amplify" value. Valid values range from 0 to 100.

int GetAmplify() Returns the currently set amplify value.

void SetUseLevel(int enable) Enables or disables usage of the sound level for the opacity.

int GetUseLevel() Returns true, if usage of the sound level for the opacity is enabled.
Otherwise, fa lse is returned.

void SetColor(int idx, color c) Sets the color at the specified index in the Color Table dialog. If
idx is out of range, nothing happens.

color GetColor(int idx) Returns the color with the specified index in the color table. If the
index is out of range, b lack is returned.

int GetColorCount() Returns the number of colors in the color table.

void AddColor(int idx, color c) Adds another color to the color table at the specified index
position. If the index is lower or equal to 0, the new color is added
to the first position. If the index is greater than the current number
of colors, the new color is added at the end.

 void RemoveColor(int idx) Removes the color located at the specified index. If the given
index is out of range, nothing happens. The Color Table of this
effect needs to include at least 1 entry.

MADRIX 2 Script Help and Manual294

© 2014 inoage GmbH

This Effect uses the Color Table. Learn more about Using Colors.

Deprecated Functions

Deprecated functions are outdated functions and should not be used anymore.

Function Description

void SetDrawMode(int mode) Sets the current draw mode the effect should use. Please note:
This function is deprecated and may be removed in one of the
next releases. Use SetShape instead.

int GetDrawMode() Returns the current draw mode. Please note: This function is
deprecated and may be removed in one of the next releases. Use
GetShape instead.

Color Modes

The function SetColorMode can be used to set different coloring modes for the effect.

Value Description

CM_LOOP Sets the loop mode. In this mode the effect repetitively selects
colors in color table for new shapes in a row.

CM_SHUFFLE Sets the shuffle mode. In this mode the effect selects the color of
a new shape from the color table randomly.

CM_RANDOM Sets the random mode. In this mode the colors of the shapes are
generated randomly. But 10% of the colors will be generated by
random access to the color table.

Shapes

This effect uses different geometrical figures. With the function SetShape it is possible to change

them. The following values can be used as parameters:

Value Description

DRAW_CROSS Selects the cross for drawing.

DRAW_CROSS_IMPLODE Selects the imploding cross for drawing.

Macros For Effects 295

© 2014 inoage GmbH

DRAW_CROSS_EXPLODE Selects the exploding cross for drawing.

DRAW_CIRCLE Selects the unfilled circle for drawing.

DRAW_CIRCLE_IMPLODE Selects the imploding circle for drawing.

DRAW_CIRCLE_EXPLODE Selects the exploding circles for drawing.

DRAW_RECT Selects the unfilled rectangle for drawing.

DRAW_RECT_IMPLODE Selects the imploding rectangle for drawing.

DRAW_RECT_EXPLODE Selects the exploding rectangle for drawing.

DRAW_STAR Selects the star for drawing.

DRAW_STAR_IMPLODE Selects the imploding star for drawing.

DRAW_STAR_EXPLODE Selects the exploding star for drawing.

DRAW_DIAMOND Selects the diamond shape for drawing.

DRAW_DIAMOND_IMPLODE Selects the imploding diamond for drawing.

DRAW_DIAMOND_EXPLODE Selects the exploding diamond for drawing.

FILL_CIRCLE Selects the filled circle for drawing.

FILL_CIRCLE_IMPLODE Selects the filled imploding circle for drawing.

FILL_CIRCLE_EXPLODE Selects the filled exploding circle for drawing.

FILL_RECT Selects the filled rectangle for drawing.

FILL_RECT_IMPLODE Selects the filled imploding rectangle for drawing.

FILL_RECT_EXPLODE Selects the filled exploding rectangle for drawing.

FILL_DIAMOND Selects the filled diamond shape for drawing.

FILL_DIAMOND_IMPLODE Selects the filled imploding diamond for drawing.

FILL_DIAMOND_EXPLODE Selects the filled exploding diamond shape for drawing.

DRAW_RANDOM Selects random shapes for drawing.

MADRIX 2 Script Help and Manual296

© 2014 inoage GmbH

5.4.4 S2L EQ Tubes

Functions Provided By S2L EQ Tubes

The following table provides an overview over all functions the effect provides:

Function Description

void SetBpm(int bpm) Sets the speed of the effect in BPM. Valid values range from 0 to
9999 BPM.

int GetBpm() Returns the current effect speed in BPM.

void SetColor(color col) Sets the effect color. Please note that the alpha channel is not
used by this effect.

color GetColor() Returns the currently set color. Please note that the alpha
channel is not used and should be ignored.

void SetFade(int fade) Set the "fade" value. Valid values range from 1 to 3000.

int GetFade() Returns the current "fade" value.

void SetSens(int sens) Sets the "Sensitivity" value for the effect. Valid values range from
0 to 100. If "Use Level (db)" is enabled, this function has no effect
because the "Amplify" value is used instead.

int GetSens() Returns the current "Sensitivity" value of the effect. If "Use Level
(db)" is enabled, this function returns 0. Because in that case the
"Amplify" value is used.

void SetAmplify(int amp) Sets the "Amplify" value for the effect. Valid values range from 0
to 100. This function has no effect if "Use Level (db)" is disabled
because then the "Sensitivity" value is used by the effect.

int GetAmplify() Returns the current "Amplify" value of the effect. This function
returns 0 if "Use Level (db)" is disabled because then the
"Sensitivity" value is used by the effect.

void SetBandCount(int cnt) Sets the number of "bands" to be displayed. Valid values range
from 1 to 511.

int GetBandCount() Returns the currently used number of "bands".

void SetInvert(int enable) Disables "Invert" if enable is set to fa lse . Otherwise, it will be
enabled.

int GetInvert() Returns true if "Invert" is enabled, otherwise fa lse.

void SetMirror(int enable) Disables "Mirror" if enable is set to fa lse . Otherwise, it will be
enabled.

int GetMirror() Returns true if "Mirror" is enabled, otherwise fa lse.

void SetUseLevel(int enable) Disables "Use Level (db)" if enable is set to fa lse . Otherwise, it will
be enabled.

int GetUseLevel() Returns true if "Use Level (db)" is enabled, otherwise fa lse.

void SetDirection(int dir) Sets the direction of the lines to horizontal or vertical. See below
for details.

int GetDirection() Returns current direction of the lines. See below for details.

Macros For Effects 297

© 2014 inoage GmbH

This Effect uses the Color Picker. Learn more about Using Colors.

Deprecated Functions

Deprecated functions are outdated functions and should not be used anymore.

Function Description

void SetSpeed(int speed) Sets the speed of the effect in FPS. Valid values range from 0 to
166. Please note: This function is deprecated and may be
removed in one of the next releases. Use SetBpm instead.

float GetSpeed() Returns the current effect speed in FPS. Please note: This
function is deprecated and may be removed in one of the next
releases. Use GetBpm instead.

Setting The Direction

This effect supports two directions, vertical lines and horizontal lines. Using the SetDirec t ion

function, it is possible to set any of them with one of the following parameters:

Value Description

DIR_HORIZONTAL Sets horizontal lines to be used by the effect.

DIR_VERTICAL Sets vertical lines to be used by the effect.

DIR_HV Sets vertical and horizontal lines to be used by the effect.

5.4.5 S2L Frequency Flash

Functions provided By S2L Frequency Flash

The following table provides an overview over all functions the effect provides:

Function Description

void SetFade(int fade) Sets the "fade" value. Valid values range from 1 to 3000.

int GetFade() Returns the current "fade" value.

MADRIX 2 Script Help and Manual298

© 2014 inoage GmbH

Function Description

void SetColor(color col) Sets the color of the effect. Please note that the alpha channel is
not used by this effect.

color GetColor() Returns the currently set color. Please note that the alpha
channel is not used and should be ignored.

void SetSens(int sens) Set the "Sensitivity" value for the effect. Valid values range from 0
to 100.

int GetSens() Returns the current "Sensitivity" value of the effect.

void SetMinBand(int index) Sets the minimum band that should be included in the effect
calculation. The given value is an index, which describes the band
that should be used. The table below provides an overview over
available values and the appropriate band.

int GetMinBand() Returns the specifier of the current minimum band. See below for
further details.

void SetMaxBand(int index) Set the maximum band that should be included in the effect
calculation. The given value is an index which describes the band
that should be used. The table below provides an overview over
available values and the appropriate band.

int GetMaxBand() Returns the specifier of the current maximum band. See below for
further details.

This Effect uses the Color Picker. Learn more about Using Colors.

Frequency Bands

This effect allows to select the frequency bands which should be used to calculate the flash. The

functions SetM inBand and SetMaxBand may be used to set the minimum band and the maximum

band. Both use an identifier value between 0 and 21 which describes one of the following

frequency bands:

Macros For Effects 299

© 2014 inoage GmbH

Value Frequency Band in Hz

0 8

1 42

2 57

3 77

4 102

5 135

6 180

7 242

8 322

9 430

10 570

11 767

12 1020

13 1360

14 1830

15 2450

16 3270

17 4310

18 5780

19 7760

20 10.300

21 13.000

Example:

The source code below would select 77Hz as minimum band and 570Hz as maximum band:

SetMinBand(3);
SetMaxBand(10);

5.4.6 S2L Level Color

Functions Provided By S2L Level Color

Function Description

MADRIX 2 Script Help and Manual300

© 2014 inoage GmbH

void SetBpm(int bpm) Sets the speed of the effect in BPM. Valid values range from 0 to
9999 BPM.

int GetBpm() Returns the current effect speed in BPM.

void SetColor(color col) Sets the color of the effect. Please note that the alpha channel is
not used by this effect.

color GetColor() Returns the currently set color. Please note that the alpha
channel is not used and should be ignored.

void SetFade(int fade) Sets the "fade" value. Valid values range from 1 to 3000.

int GetFade() Returns the current "fade".

void SetDirection(int dir) Sets the direction of the effect. Valid values for d ir are DIR_LEFT,
DIR_RIGHT, DIR_UP and DIR_DOWN.

int GetDirection() Returns the current direction.

void SetMono(int enable) Disables "mono" if enable is set to fa lse. Otherwise, it will be
enabled.

int GetMono() Returns true if "mono" is enabled, otherwise fa lse is returned.

This Effect uses the Color Picker. Learn more about Using Colors.

Deprecated Functions

Deprecated functions are outdated functions and should not be used anymore.

Function Description

void SetSpeed(int speed) Sets the speed of the effect in FPS. Valid values range from 0 to
166. Please note: This function is deprecated and may be
removed in one of the next releases. Use SetBpm instead.

float GetSpeed() Returns the current effect speed in FPS. Please note: This
function is deprecated and may be removed in one of the next
releases. Use GetBpm instead.

5.4.7 S2L Level Meter

Functions Provided By S2L Level Meter

The following table provides an overview over all functions the effect provides:

Function Description

Macros For Effects 301

© 2014 inoage GmbH

void SetBpm(int bpm) Sets the speed of the effect in BPM. Valid values range from 0 to
9999 BPM.

int GetBpm() Returns the current effect speed in BPM.

void SetFade(int fade) Sets the "fade" value. Valid values range from 1 to 100.

int GetFade() Returns the current "fade" value.

void SetDirection(int dir) Sets the direction of the effect. Valid values for d ir are DIR_UP,
DIR_DOWN, DIR_LEFT and DIR_RIGHT.

int GetDirection() Returns the current direction.

void SetCrossed(int enable) Enables cross-direction mode if enable is set to true . Otherwise, it
is disabled.

int GetCrossed() Returns true if cross-direction mode is enabled, otherwise fa lse is
returned.

void SetAmplify(int amp) Sets the "Amplify" value. Valid values range from 0 to 100.

int GetAmplify() Returns the current "Amplify" value.

void SetBandCount(int cnt) Sets the number of "bands" to be displayed. Valid values are 1
and 2.

int GetBandCount() Returns the current number of "bands".

int SetInvert(int enable) Disables "Invert" if enable is set to fa lse . Otherwise, it will be
enabled.

void GetInvert() Returns true if "Invert" is enabled, otherwise fa lse.

void SetMirror(int mirror) Disables "Mirror" if enable is set to fa lse . Otherwise, it will be
enabled.

int GetMirror() Returns true if "Mirror" is enabled, otherwise fa lse.

void SetViewLog(int enable) Disables "ViewLog" if enable is set to fa lse . Otherwise, it will be
enabled.

int GetViewLog() Returns true if "ViewLog" is enabled, otherwise fa lse.

void SetDoubleOutwards(int enable) Disables "double outwards" if enable is fa lse . Otherwise, it will be
enabled.

int GetDoubleOutwards() Returns true if "double outwards" is enabled, otherwise fa lse.

void SetDoubleInwards(int enable) Disables "double inwards" if enable is set to fa lse . Otherwise, it will
be enabled.

int GetDoubleInwards() Returns true if "double inwards" is enabled, otherwise fa lse.

void SetMonochrome(int enable) Enables or disables monochrome mode.

int GetMonochrome() Returns whether monochrome mode is enabled or not.

void SetColor(int idx, color c) Sets the color at the specified index in the Color Ramp dialog. If
idx is out of range, nothing happens.

color GetColor(int idx) Returns the color with the specified index in the Color Ramp
dialog. If the index is out of range, b lack is returned.

int GetColorCount() Returns the number of colors used in the Color Ramp.

int SetColorPosition(int idx, float
position)

Sets the color of the given index to a new position and returns the
new index. Valid values for position range from 0.01 to 0.99. The
first and last color are not allowed to be moved!

MADRIX 2 Script Help and Manual302

© 2014 inoage GmbH

float GetColorPosition(int idx) Returns the position of a color at the specified index.

void SetColorFade(int idx, int fade) Disables or enables color fade for the color at the specified
position by either using 0 (Off) or 1 (On) for fade.

int GetColorFade(int idx) Returns if color fade is set for the color at the specified index.

void FadeAllColors() Enables color fade for all colors in the Color Ramp.

void FadeNoneColors() Disables color fade for all colors in the Color Ramp.

void SetUniformDistances() Sets uniform distances between each color in the Color Ramp.

void InvertColorPositions() Inverts the positions of the colors in the Color Ramp.

void InvertColors() Inverts every single color in the Color Ramp.

void AddColor(color c, float position, int
idx)

Adds another color to the Color Ramp at the specified index
position. Valid values for position range from 0.01 to 0.99. If the
index is lower or equal to 0, the new color is added to the first
position. If the index is greater than the current number of colors,
the new color is added at the end.

void RemoveColor(int idx) Removes the color at the specified index. If the given index is out
of range, nothing happens.

This Effect uses the Color Ramp dialog. Learn more about Using Colors.

Deprecated Functions

Deprecated functions are outdated functions and should not be used anymore.

Function Description

void SetSpeed(int speed) Sets the speed of the effect in FPS. Valid values range from 0 to
166. Please note: This function is deprecated and may be
removed in one of the next releases. Use SetBpm instead.

float GetSpeed() Returns the current effect speed in FPS. Please note: This
function is deprecated and may be removed in one of the next
releases. Use GetBpm instead.

5.4.8 S2L Level Ring

Functions Provided By S2L Level Ring

The following table provides an overview over all functions the effect provides:

Function Description

Macros For Effects 303

© 2014 inoage GmbH

void SetBpm(int bpm) Sets the speed of the effect in BPM. Valid values range from 0 to
9999 BPM.

int GetBpm() Returns the current effect speed in BPM.

void SetFade(int fade) Sets the "fade" value. Valid values range from 1 to 100.

int GetFade() Returns the current "fade" value.

void SetAmplify(int amp) Sets the "Amplify" value. Valid values range from 0 to 100.

int GetAmplify() Returns the current "Amplify" value.

void SetMono(int enable) Disables "mono" if enable is set to fa lse . Otherwise, use true.

int GetMono() Returns true if "mono" is enabled, otherwise fa lse.

void SetViewLog(int enable) Disables "ViewLog" if enable is set to fa lse . Otherwise, use true.

int GetViewLog() Returns true if "ViewLog" is enabled, otherwise fa lse.

void SetDirection(int dir) Sets the direction of the effect. See below for details.

int GetDirection() Returns the current effect direction. See below for details.

void SetShape(int shape) Sets the shape of the objects. See below for details.

int GetShape() Returns the currently used shape of the objects. See below for
details.

void SetColor(int idx, color c) Sets the color at the specified index in the Color Table dialog. If
idx is out of range, nothing happens. The Color Table of this Effect
always requires 3 entries.

color GetColor(int idx) Returns the color with the specified index in the color table. If the
index is out of range black is returned.

int GetColorCount() Returns the number of colors in the color table. The Color Table of
this Effect always requires 3 entries.

This Effect uses the Color Table. Learn more about Using Colors.

Deprecated Functions

Deprecated functions are outdated functions and should not be used anymore.

Function Description

void SetSpeed(int speed) Sets the speed of the effect in FPS. Valid values range from 0 to
166. Please note: This function is deprecated and may be
removed in one of the next releases. Use SetBpm instead.

float GetSpeed() Returns the current effect speed in FPS. Please note: This
function is deprecated and may be removed in one of the next
releases. Use GetBpm instead.

MADRIX 2 Script Help and Manual304

© 2014 inoage GmbH

void SetDrawMode(int mode) Sets the current draw mode the effect should use. Please note:
This function is deprecated and may be removed in one of the
next releases. Use SetShape instead.

int GetDrawMode() Returns the current draw mode. Please note: This function is
deprecated and may be removed in one of the next releases. Use
GetShape instead.

Setting The Direction

The directions for this effect are only "inward" or "outward". Therefore, SetDirec t ion only gets the

following values as valid parameters:

Value Description

DIR_OUTWARDS Sets the direction from the center to the outside.

DIR_INWARDS Sets the direction from the outside to the center.

Shapes

This effect uses different geometrical figures. With the function SetShape it is possible to change

them. The following values can be used as parameter:

Value Description

DRAW_CROSS Selects the cross for drawing.

DRAW_CIRCLE Selects the unfilled circle for drawing.

DRAW_RECT Selects the unfilled rectangle for drawing.

DRAW_STAR Selects the star for drawing.

FILL_CIRCLE Selects the filled circle for drawing.

FILL_RECT Selects the filled rectangle for drawing.

Macros For Effects 305

© 2014 inoage GmbH

5.4.9 S2L Waveform

Functions Provided By S2L Waveform

The following table provides an overview over all functions the effect provides:

Function Description

void SetDirection(int direction) Sets the direction for the effect. Valid values for d irection are
DIR_UP, DIR_DOWN, DIR_LEFT, and DIR_RIGHT.

int GetDirection() Returns the current direction.

void SetTimeSlot(float value) Sets the time slot va lue. Valid values for va lue range from 0.01 to
9999.

float GetTimeSlot() Returns the currently set time slot.

void SetChannelView(int view) Sets the channels that should be displayed by the effect. See
below for further details.

int GetChannelView() Returns the currently set channel to be displayed by the effect.
See below for further details.

void SetShiftOutwards(int enable) Sets the direction to outwards if enable is set to true . Otherwise, it
is disabled. See below for further details.

int GetShiftOutwards() Returns true if "Shift Outwards" is currently enabled, otherwise
fa lse. See below for further details.

void SetShiftInwards(int enable) Sets the direction to inwards if enable is set to true, otherwise it is
disabled. See below for further details.

int GetShiftInwards() Returns true if "Shift Inwards" is currently enabled, otherwise fa lse
. See below for further details.

void SetColor(int idx, color c) Sets the color at the specified index in the Color Ramp. If idx is
out of range, nothing happens.

color GetColor(int idx) Returns the color with the specified index in the Color Ramp. If the
index is out of range, b lack is returned.

int GetColorCount() Returns the amount of colors currently used by the Color Ramp.

void AddColor(color c, float position, int
fade)

Adds another co lo r c to the Color Ramp at the specified position.
Valid values for position range from 0.01 to 0.99. If the index is
lower or equal to 0, the new color is added to the first position. If
index is greater than the current number of colors, the new color
is added at the end. Valid values for fade are 1 (On).

void RemoveColor(int index) Removes the color at the specified index. If the given index is out
of range, nothing happens.

int SetColorPosition(int index, float
position)

Sets the color of the given index to a new position and returns the
new index. Valid values for position range from 0.01 to 0.99. The
first and last color are not allowed to be moved!

float GetColorPosition(int index) Returns the color position of the given index.

void SetUniformDistances() Sets uniform distances between each color in the Color Ramp.

void InvertColorPositions() Inverts the positions of the colors in the Color Ramp.

void InvertColors() Inverts every single color in the Color Ramp.

MADRIX 2 Script Help and Manual306

© 2014 inoage GmbH

This Effect uses the Color Ramp. Learn more about Using Colors.

Selecting The Sound Channels

The waveform effect is able to show the waveform of the two stereo sound channels. It is

possible to select the waveform of the left or right channel. In addition, it is possible to show both

channels at the same time (stereo). Selecting mono is also an option. The function

SetChannelV iew enables a macro to set these settings. Therefore, the following values may be

used as parameters:

Value Description

CHM_MONO Selects mono mode.

CHM_STEREO Selects stereo mode, which displays both channels at the same
time.

CHM_LEFT Selects the left channel.

CHM_RIGHT Selects the right channel.

Shifting The Direction

In addition to the directions DIR_UP, DIR_DOWN, DIR_LEFT, and DIR_RIGHT, the waveform can

move inwards or outwards. With the two functions SetShiftOutw ards and SetShift Inw ards, it is

possible to control these directions. They both use t rue or fa lse as parameters to disable or to

enable the according movement.

Example:

SetShiftInwards(true); //activates inwards movement

SetShiftInwards(false); //disables inwards movement

SetShiftOutwards(true); //activates outwards movement

SetShiftOutwards(false); //disables outwards movement

Macros For Effects 307

© 2014 inoage GmbH

5.4.10 S2L Wavegraph

Functions Provided By S2L Wavegraph

The following table provides an overview over all functions the effect provides:

Function Description

void SetColor(color col) Sets the color for the effect.

color GetColor() Returns the current effect color.

void SetDirection(int dir) Sets the direction for the effect. Valid values are DIR_UP,
DIR_DOWN, DIR_LEFT, and DIR_RIGHT.

int GetDirection() Returns the current direction.

void SetTimeSlot(float timeSlot) Sets the time slot value. Valid values range from 0.01 to 9999.

float GetTimeSlot() Returns the currently set time slot.

void SetChannelView(int view) Sets the channels that should be displayed by the effect. See
below for further details.

int GetChannelView() Returns the currently set channel to be displayed by the effect.
See below for further details.

void SetShiftOutwards(int enable) Sets the direction to outwards if enable is set to true . Otherwise, it
is disabled. See below for further details.

int GetShiftOutwards() Returns true if "Shift Outwards" is currently enabled, otherwise
fa lse. See below for further details.

void SetShiftInwards(int enable) Sets the direction to inwards if enable is set to true, otherwise it is
disabled. See below for further details.

int GetShiftInwards() Returns true if "Shift Inwards" is currently enabled, otherwise fa lse
. See below for further details.

This Effect uses the Color Picker. Learn more about Using Colors.

Selecting The Sound Channels

MADRIX 2 Script Help and Manual308

© 2014 inoage GmbH

The wavegraph effect is able to show the wave graph of the two stereo sound channels. It is

possible to select the wavegraph of the left or right channel. In addition, it is possible to show

both channels at the same time (stereo). Selecting mono is also an option. The function

SetChannelV iew enables a macro to set these settings. The following values may be used as

parameters:

Value Description

CHM_MONO Selects mono mode.

CHM_STEREO Selects stereo mode, which displays both channels at the same
time.

CHM_LEFT Selects the left channel.

CHM_RIGHT Selects the right channel.

Shifting The Direction

In addition to the directions DIR_UP, DIR_DOWN, DIR_LEFT, and DIR_RIGHT, the wavegraph can

move inwards or outwards. With the two functions SetShiftOutw ards and SetShift Inw ards, it is

possible to control these directions. They both use t rue or fa lse as parameters to disable or to

enable the according movement.

Example:

SetShiftInwards(true); //activates inwards movement

SetShiftInwards(false); //disables inwards movement

SetShiftOutwards(true); //activates outwards movement

SetShiftOutwards(false); //disables outwards movement

5.5 M2L Music2Light Effects

5.5.1 M2L Color Fade

Functions Provided By M2L Color Fade

The following table provides an overview over all functions the effect provides:

Function Description

Macros For Effects 309

© 2014 inoage GmbH

void SetColor(color col) Sets the effect color. Please note that the alpha channel is not
used by this effect.

color GetColor() Returns the currently set color. Please note that the alpha
channel is not used and should be ignored.

void SetFade(int fade) Sets the fade value. Valid values range from 1 to 100.

int GetFade() Returns the current fade value.

This Effect uses the Color Picker. Learn more about Using Colors.

5.5.2 M2L Color Rings

Functions Provided By M2L Color Rings

The following table provides an overview over all functions the effect provides:

Function Description

void SetColor(color col) Sets the color of the effect. Please note that the alpha channel is
not used by this effect.

color GetColor() Returns the currently set color. Please note that the alpha
channel is not used and should be ignored.

void SetBpm(int bpm) Sets the speed of the effect in BPM. Valid values range from 0 to
9999 BPM.

int GetBpm() Returns the current effect speed in BPM.

void SetDirection(int dir) Sets the direction of the effect. See below for further details.

int GetDirection() Returns the current direction. See below for further details.

This Effect uses the Color Picker. Learn more about Using Colors.

Deprecated Functions

Deprecated functions are outdated functions and should not be used anymore.

Function Description

MADRIX 2 Script Help and Manual310

© 2014 inoage GmbH

void SetSpeed(int speed) Sets the speed of the effect in FPS. Valid values range from 0 to
166. Please note: This function is deprecated and may be
removed in one of the next releases. Use SetSpeed instead.

float GetSpeed() Returns the current effect speed in FPS. Please note: This
function is deprecated and may be removed in one of the next
releases. Use GetSpeed instead.

Setting the Direction

This effect draws rings depending on the music. Those rings are drawn around the matrix and get

smaller with each call (inwards) or they are drawn in the center of the matrix and grow with each

frame (outwards). Using the function SetDirec t ion it is possible to set this direction.

Value Description

DIR_INWARDS Selects an inward direction. Large rings will be drawn around the
matrix and shrink with each frame.

DIR_OUTWARDS Selects an outward direction. Small rings will be drawn in the
center of the matrix and grow with each frame.

5.5.3 M2L Color Scroll

Functions Provided By the M2L Color Scroll

The following table provides an overview over all functions the effect provides:

Function Description

void SetColor(color col) Sets the color of the effect color. Please note that the alpha
channel is not used by this effect.

color GetColor() Returns the currently set color. Please note that the alpha
channel is not used and should be ignored.

void SetDirection(int dir) Sets the direction of the effect. Allowed are all directions described
in the general summary and some additional values which are
described below.

int GetDirection() Returns the current direction. There are some effect specific
directions which are described below.

void SetCrossed(enable) Enables cross-direction mode if enable is set to true . Otherwise, it
is disabled.

int GetCrossed() Returns true if the cross-direction mode is enabled, otherwise fa lse
.

Macros For Effects 311

© 2014 inoage GmbH

void SetBpm(int bpm) Sets the speed of the effect in BPM. Valid values range from 0 to
9999 BPM.

int GetBpm() Returns the current effect speed in BPM.

void SetStep(int step) Sets the step width of the new colors. Valid values for step range
from 1 to 9999.

int GetStep() Returns the current step width.

void SetXOffset(int offset) Sets the x-offset value, which ranges from 1 to 9999.

int GetXOffset() Returns the current x-offset.

void SetFade(int enable) Enables fading between the colors if enable is true. Otherwise it
will be disabled.

int GetFade() Returns true if fading is enabled, otherwise fa lse.

This Effect uses the Color Picker. Learn more about Using Colors.

MADRIX 2 Script Help and Manual312

© 2014 inoage GmbH

Additional Directions

In addition to the standard directions DIR_UP, DIR_DOWN, DIR_LEFT, and DIR_RIGHT, four more

directions are effect-specific. These are vertical and horizontal scrolling lines, both inwards and

outwards. It is possible to set them using the function SetDirec t ion. The following values must be

used as parameters:

Value Description

DIR_OUTWARDS_V Sets a vertical outward movement (Vertical Explode).

DIR_INWARDS_V Sets a vertical inward movement (Vertical Implode).

DIR_OUTWARDS_H Sets a horizontal outward movement (Horizontal Explode).

DIR_INWARDS_H Sets a horizontal inward movement (Horizontal Implode).

DIR_OUTWARDS_RECT Sets a rectangular outward movement (Rectangle Explode).

DIR_INWARDS_RECT Sets a rectangular inward movement (Rectangle Implode).

DIR_OUTWARDS_SQUARE Sets a quadratic outward movement (Square Explode).

DIR_INWARDS_SQUARE Sets a quadratic inward movement (Square Implode).

DIR_OUTWARDS_CIRCLE Sets a circled outward movement (Circle Explode).

DIR_INWARDS_CIRCLE Sets a circled inward movement (Circle Implode).

DIR_OUTWARDS_ELLIPSE Sets an elliptic outward movement (Ellipse Explode). This is
different to a circle on rectangular matrices. On quadratic matrices
the ellipse will also be a circle.

DIR_INWARDS_ELLIPSE Sets an elliptic inward movement (Ellipse Implode). This is
different to a circle on rectangular matrices. On quadratic matrices
the ellipse will also be a circle.

5.5.4 M2L Interval Drops

Functions Provided by M2L Interval Drops

The following table provides an overview over all functions the effect provides:

Function Description

void SetColor(color col) Sets the color of the effect color. Please note that the alpha
channel is not used by this effect.

color GetColor() Returns the currently set color. Please note that the alpha
channel is not used and should be ignored.

Macros For Effects 313

© 2014 inoage GmbH

void SetBpm(int bpm) Sets the speed of the effect in BPM. Valid values range from 0 to
9999 BPM.

int GetBpm() Returns the current effect speed in BPM.

void SetDirection(int dir) Sets the direction of the effect. Valid values are DIR_UP,
DIR_DOWN, DIR_LEFT and DIR_RIGHT.

int GetDirection() Returns the current direction.

void SetLength(int len) Sets the length of the drops. Valid values range from 1 to 100.

int GetLength() Returns the current length of drops.

void SetPixelWidth(int w) Sets the width of the drops in pixels. Valid values range from 1 to
9999.

int GetPixelWidth() Returns the width of the drops in pixels.

void SetVectorWidth(float w) Sets the width of the drops using relative coordinates between 0
and 1 according to the current matrix size and direction. See
below for further details.

float GetVectorWidth() Returns the width of the drops relative to the current matrix size
and direction. See below for further details.

void SetUseBass(int enable) Disables "use bass" if enable is set to fa lse. Otherwise, it will be
enabled.

int GetUseBass() Returns true if "use bass" is enabled, otherwise fa lse.

This Effect uses the Color Picker. Learn more about Using Colors.

Deprecated Functions

Deprecated functions are outdated functions and should not be used anymore.

Function Description

void SetSpeed(int speed) Sets the speed of the effect in FPS. Valid values range from 0 to
166. Please note: This function is deprecated and may be
removed in one of the next releases. Use SetBpm instead.

float GetSpeed() Returns the current effect speed in FPS. Please note: This
function is deprecated and may be removed in one of the next
releases. Use GetBpm instead.

MADRIX 2 Script Help and Manual314

© 2014 inoage GmbH

Using a Relative Width of Drops

The width of the drops may be given in pixels or using relative values between 0 and 1. Please see

the functions SetPixe lWidth or SetVec torWidth A ralative value of 0 represents the minimum size

and will be increased to 1 pixel. And 1 represents the full size of the matrix.

Furthermore, these values depends on the current direction of the effect. If a horizontal

movement is active (a movement to the left or right), the value is used in relation to the matrix

height. If a vertical movement is active (up or down), the value is used in relation to the width of

the matrix.

5.5.5 M2L Interval Tubes

Functions Provided By M2L Interval Tubes

The following table provides an overview over all functions the effect provides:

Function Description

void SetColor(color col) Sets the color of the effect color. Please note that the alpha
channel is not used by this effect.

color GetColor() Returns the currently set color. Please note that the alpha
channel is not used and should be ignored.

void SetBpm(int bpm) Sets the speed of the effect in BPM. Valid values range from 0 to
9999 BPM.

int GetBpm() Returns the current effect speed in BPM.

void SetDirection(int dir) Set the direction for the effect. This effect has two effect specific
directions which are described below.

int GetDirection() Returns the current direction. The returned values are described
below.

void SetFade(int fade) Set the fade value for the tubes. Valid values range from 1 to
3000.

int GetFade() Returns the current fade value.

void SetPixelWidth(int w) Sets the width of the tubes in pixels. Valid values range from 1 to
9999.

int GetPixelWidth() Returns the width of the tubes in pixels.

void SetVectorWidth(float w) Sets the width of the tubes using relative coordinates between 0
and 1 according to the current matrix size and direction. See
below for further details.

float GetVectorWidth() Returns the width of the drops as relative value depending on the
current matrix size and direction. See below for further details.

Macros For Effects 315

© 2014 inoage GmbH

void SetUseBass(int enable) Disables "use bass" if enable is set to fa lse. Otherwise, it will be
enabled.

int GetUseBass() Returns true if "use bass" is enabled, otherwise fa lse.

This Effect uses the Color Picker. Learn more about Using Colors.

Deprecated Functions

Deprecated functions are outdated functions and should not be used anymore.

Function Description

void SetSpeed(int speed) Sets the speed of the effect in FPS. Valid values range from 0 to
166. Please note: This function is deprecated and may be
removed in one of the next releases. Use SetBpm instead.

float GetSpeed() Returns the current effect speed in FPS. Please note: This
function is deprecated and may be removed in one of the next
releases. Use GetBpm instead.

Setting The Direction

The effect is able to draw vertical or horizontal lines. The direction can be set by SetDirec t ion

with the following values as parameter:

Value Description

DIR_HORIZONTAL Draws the tubes as horizontal lines.

DIR_VERTICAL Draws the tubes as vertical lines.

DIR_HV Draws the tubes as vertical and horizontal lines.

MADRIX 2 Script Help and Manual316

© 2014 inoage GmbH

Using A Relative Width Of Tubes

The width of the tubes may be given in pixels or as a relative value between 0 and 1. The

function SetVec torWidth uses such relative coordinates. A value of 0 represents the minimum size

and will be increased to 1 pixel. A value of 1 represents the whole size of the matrix.

Furthermore, this value depends on the current direction. If horizontal lines are activated, the

value is used in relation to the matrix height. If vertical lines are activated, the value is used in

relation to the width of the matrix.

5.5.6 M2L Single Tone Shapes

Functions Provided By M2L Single Tone

The following table provides an overview over all functions the effect provides:

Function Description

void SetColorMode(color colmode) Sets the color mode for the effect. See the table below for further
details.

color GetColorMode() Returns the currently set color mode. See the table below for
further details.

void SetShape(int shape) Sets the shape of the objects. See below for details.

int GetShape() Returns the currently used shape of objects. See below for details.

void SetFade(int fade) Sets the fade value in BPM. Valid values range from 1 to 3000.

int GetFade() Returns the current fade value.

void SetSens(int sens) Sets the "Sensitivity" value of the effect. Valid values range from 0
to 100.

int GetSens() Returns the current "Sensitivity" value of the effect.

void SetVectorWidth(float vWidth) Sets the size of the shapes in percent relative to the matrix size.
Valid values range from 0.01 to 99.99. The given value is related
to the smaller dimension of the matrix. If there is a matrix with
size of 5x20 pixels for example, the given value means n% of 5.
Whereas 1.0 means 100%. As you can see, it is possible to set a
much greater value then the smaller dimension.

float GetVectorWidth() Returns the width of the shapes in percent. See Se tVectorW idth for
further details.

void SetPixelWidth(int iWidth) Sets the size of the figures in pixels. Valid values range from 1 to
9999.

int GetPixelWidth() Returns the size of the objects in pixels.

Macros For Effects 317

© 2014 inoage GmbH

void SetVectorPitch(float vPitch) Sets the pitch of the shapes in percent in relation to the matrix
size. Valid values range from 0.01 to 99.99. The given value is
related to the smaller dimension of the matrix. E.g. if there is a
matrix with a size of 5x20 pixels, the given value means n% of 5.
A value of 1.0 means 100%. As you can see, it is possible to set a
much greater value then the smaller dimension.

float GetVectorPitch() Returns the pitch of the shapes in percent. See Se tVectorP itch for
further details.

void SetPixelPitch(int iPitch) Sets the pitch between two shapes in pixels. Valid values range
from 1 to 9999.

int GetPixelPitch() Returns the currently set pitch.

void SetVectorBorder(float vBorder) Sets the border width of the shapes in percent. This value relates
to the current width of the shapes. E.g. if the current width of the
shapes is 10 pixels, a value of 0.5 would mean that the border is
drawn with a width of 5 pixels. Valid values range from 0.01 to
99.99. A value of 1.0 means 100% of the shapes width.

float GetVectorBorder() Returns the border width of the shapes in percent relative to the
shapes width. See Se tVectorBorde r for further details.

void SetPixelBorder(int iBorder) Sets the current border thickness of the shapes in pixels.

int GetPixelBorder() Returns the current border thickness of the shapes in pixels.

int GetColorCount() Returns the number of colors in the color table.

void AddColor(int idx, color c) Adds another color to the color table at the specified index
position. If the index is lower or equal to 0, the new color is added
to the first position. If the index is greater than the current number
of colors, the new color is added at the end.

 void RemoveColor(int idx) Removes the color located at the specified index. If the given
index is out of range, nothing happens. The Color Table of this
effect needs to include at least 1 entry.

void SetColor(int idx, color c) Sets the color with the specified index in the Color Table to the
given color. If the index is out of range, nothing happens.

color GetColor(int idx) Returns the color with the specified index in the Color Table. If the
index is out of range, b lack is returned.

This Effect uses the Color Table. Learn more about Using Colors.

Deprecated Functions

Deprecated functions are outdated functions and should not be used anymore.

Function Description

void SetPitch(int pitch) Sets the pitch between two shapes in pixels. Valid valuesrange
from 1 to 9999. Please note: This function is deprecated and may
be removed in a forthcoming release. Use SetPixelPitch instead

MADRIX 2 Script Help and Manual318

© 2014 inoage GmbH

int GetPitch() Returns the currently set pitch in pixels. Please note: This
function is deprecated and may be removed in a forthcoming
release. Use GetPixelPitch instead.

void SetThickness(int thickness) Sets the thickness of the shapes in pixels. Please note: This
function is deprecated and may be removed in a forthcoming
release. Use SetPixelBorder instead.

int GetThickness() Returns the current thickness. Please note: This function is
deprecated and may be removed in a forthcoming release. Use
GetPixelBorder instead.

void SetWidth(int width) Sets the size of the objects in pixels. Valid values range from 1 to
9999. Please note: This function is deprecated and may be
removed in a forthcoming release. Use SetPixelWidth instead.

int GetWidth() Returns the size of the objects in pixels. Please note: This
function is deprecated and may be removed in a forthcoming
release. Use GetPixelWidth instead.

void SetDrawMode(int mode) Sets the current draw mode the effect should use. Please note:
This function is deprecated and may be removed in one of the
next releases. Use SetShape instead.

int GetDrawMode() Returns the current draw mode. Please note: This function is
deprecated and may be removed in one of the next releases. Use
GetShape instead.

Color Modes

The function SetColorMode can be used to determine the used coloring mode:

Value Description

CM_LOOP Sets the loop mode. In this mode the effect repetitively selects
colors in color table for new shapes in a row.

CM_SHUFFLE Sets the shuffle mode. In this mode the effect selects the color of
a new shape from the color table randomly.

CM_RANDOM Sets the random mode. In this mode the colors of the shapes are
generated randomly. But 10% of the colors will be generated by
random access to the color table.

Macros For Effects 319

© 2014 inoage GmbH

Shapes

This effect uses different geometrical figures. With the function SetShape it is possible to change

them. The following values can be used as parameter:

Value Description

DRAW_CROSS Selects the cross for drawing.

DRAW_CROSS_IMPLODE Selects the imploding cross for drawing.

DRAW_CROSS_EXPLODE Selects the exploding cross for drawing.

DRAW_CIRCLE Selects the unfilled circle for drawing.

DRAW_CIRCLE_IMPLODE Selects the imploding circle for drawing.

DRAW_CIRCLE_EXPLODE Selects the exploding circles for drawing.

DRAW_RECT Selects the unfilled rectangle for drawing.

DRAW_RECT_IMPLODE Selects the imploding rectangle for drawing.

DRAW_RECT_EXPLODE Selects the exploding rectangle for drawing.

DRAW_STAR Selects the star for drawing.

DRAW_STAR_IMPLODE Selects the imploding star for drawing.

DRAW_STAR_EXPLODE Selects the exploding star for drawing.

DRAW_DIAMOND Selects the diamond shape for drawing.

DRAW_DIAMOND_IMPLODE Selects the imploding diamond for drawing.

DRAW_DIAMOND_EXPLODE Selects the exploding diamond for drawing.

FILL_CIRCLE Selects the filled circle for drawing.

FILL_CIRCLE_IMPLODE Selects the filled imploding circle for drawing.

FILL_CIRCLE_EXPLODE Selects the filled exploding circle for drawing.

FILL_RECT Selects the filled rectangle for drawing.

FILL_RECT_IMPLODE Selects the filled imploding rectangle for drawing.

FILL_RECT_EXPLODE Selects the filled exploding rectangle for drawing.

FILL_DIAMOND Selects the filled diamond shape for drawing.

FILL_DIAMOND_IMPLODE Selects the filled imploding diamond for drawing.

FILL_DIAMOND_EXPLODE Selects the filled exploding diamond shape for drawing.

DRAW_RANDOM Selects random shapes for drawing.

MADRIX 2 Script Help and Manual320

© 2014 inoage GmbH

Part

VI

MADRIX 2 Script Help and Manual322

© 2014 inoage GmbH

6 Storage Place Macro

6.1 Overview

Introduction

Storage Place Macros can be used to manipulate effects located on a Storage Place in MADRIX. In

this way, special functions can be used to change the outcome and settings. These macros are

written in MADRIX Script. Please note that such a macro has effect upon all layers of the effect.

Storage Place Macros are stored together with a MADRIX Setup file. Moreover, it is possible to

save macros as separate files. The file extension of a macro is .m m s. The extension of a compiled

macro is .m c m.

The button to call up the Storage Place Macro can be found between the 'Description

Field' and the 'Pause' button.

Functions Called By MADRIX

There are several functions called by MADRIX in order to let the macro react to different events.

void InitEffect()

void PreRenderEffect()

void PostRenderEffect()

void MatrixSizeChanged()

If a function is not needed by a macro, it is not necessary to implement it. Regarding InitEffec t,

PreRenderEffec t, and PostRenderEffec t a message is printed out if one of them is missing. This is

not an error, but only an information for the developer of the script.

Storage Place Macro 323

© 2014 inoage GmbH

I nitEffec t

(automatically included in a new script)

InitEffec t is called by MADRIX whenever the macro needs to be initialized. This is the case after

compiling and starting a new macro or when the user pressed the "Start" button of the Script

Editor. A macro can assume that any global variable is initialized with 0 and that any global field is

empty as long as it has not been initialized with a value.

This function is the right place to initialize global variables, reset any fields, set the speed of an

effect, or whatever is necessary to (re)start the macro.

PreRenderEffec t

(automatically included in a new script)

This function is called directly before PostRenderEffec t. It may be used if the macro has to

initialize any settings before an effect is rendered.

void InitEffect()
{

}
void PreRenderEffect()
{
 color c = {random(0, 255), random(0, 255)}; Clear(c);
}

This example uses the function PreRenderEffec t to fill the matrix once after initializing a random

color for this task.

MADRIX 2 Script Help and Manual324

© 2014 inoage GmbH

PostRenderEffec t

(automatically included in a new script)

This function is called after an effect has been rendered completely. Certain functions might want

to be called. That could be a filter, for example. The number of calls per second depends on the

currently set speed of the effect. It can be received with the help of the function GetSpeed() and

set with the function SetSpeed.

MartrixSizeChanged

(automatically included in a new script)

Mat ixSizeChanged is called after the size of the matrix has been changed. This may be due to a

change to the matrix settings or because a new map setting was set, e.g. caused by the call of a

map function.

Standard Outline

When you open the Storage Place Macro Editor, the empty standard macro will look like this:

@scriptname="";
@author="";
@version="";
@description="";

void InitEffect()
{

}

void PreRenderEffect()
{

}

void PostRenderEffect()
{

}

void MatrixSizeChanged()
{
InitEffect();

}

Storage Place Macro 325

© 2014 inoage GmbH

6.2 Functions

Specific Resources

Functions called by MADRIX
Storage Place Macro: Available Functions
Parameters

General Resources

Keyword Search
List Of Functions (Alphabetical Order)
List Of Functions (Grouped)
List Of Global Variables and Constants
List Of Operations
List Of Structures
Table Of Frequencies
Table Of Notes

Available Functions

Standard Functions

It is useful to consult the List of Functions (Alphabetical Order) for non-specific functions.

Functions Provided By The Storage Place Macro

These functions are neither available in the MAS Script effect, nor in Macros for effects, nor in the

Main Output Macro. Each effect pipeline, that is Storage Area A and Storage Area B, has its own

Storage Place Macro.

Function Description

Effect Functions (Incl. All Layers)

float GetSpeedMaster() Retrieves the value of the Speed Master.

void SetSpeedMaster(float value) Sets the value for the Speed Master. Valid values range from -
10.0 to 10.0.

MADRIX 2 Script Help and Manual326

© 2014 inoage GmbH

int GetPause() Retrieves the status of the pause function.

void SetPause(int state) Sets the Storage Place to pause mode or not. Valid values are

PAUSE and NOPAUSE. »Description

int GetSubMaster() Retrieves the current value of the sub master.

void SetSubMaster(int value) Sets the sub master value. Valid values range from 0 to 255.

string GetDescription() Retrieves the currently used description of the Storage Place.

void SetDescription(string text) Allows to name the Storage Place. The string variable text must be
given in quotation marks. E.g. SetDescription("Storage Place 1");

void SetFilter(int filter) Applies a Filter Effect (FX) to the Storage Place. Valid values for
filte r are »Filters

int GetFilter() Returns which Filter Effect (FX) is applied to the Storage Place.

Layer Functions (For Single Layers)

int GetLayerCount() Retrieves the currently used number of layers.

int GetLayerSolo(int number) Retrieves if the specified layer is used in solo mode. Layer
indexing (num ber) starts with 0.

void SetLayerSolo(int number, int state) Sets solo mode for a specified layer. Layer indexing (num ber)
starts with 0.

int GetLayerBlind(int number) Retrieves if the specified layer is used in blind mode. Layer
indexing (num ber) starts with 0.

void SetLayerBlind(int number, int state) Sets blind mode for a specified layer. Layer indexing (num ber)
starts with 0.

int GetLayerSubMaster(int number) Retrieves the value of the sub master of a specified layer. Layer
indexing (num ber) starts with 0.

void SetLayerSubMaster(int number, int
value)

Sets the value of the sub master of a specified layer. Layer
indexing (num ber) starts with 0.

void EnableLayerFrameFade(int
number, int enable)

Enables frame fade for a specified layer. Layer indexing (num ber)
starts with 0.

int IsLayerFrameFadeEnabled(int
number)

Retrieves if frame fade is enabled for the specified layer. Layer
indexing (num ber) starts with 0.

int GetLayerMixMode(int number) Retrieves the currently used mix mode of the specified layer.

Possible values are described here. Layer indexing (num ber)

starts with 0.

void SetLayerMixMode(int number, int
mix mode)

Sets the mix mode for the specified layer. Possible values are

described here. Layer indexing (num ber) starts with 0.

int GetLayerLink(int number) Retrieves if link mode is enabled for the specified layer. Layer
indexing (num ber) starts with 0.

void SetLayerLink(int number, int state) Enables link mode for the specified layer. Layer indexing (num ber)
starts with 0.

void MapLayerEffectVector(int number,
float x, float y, float w, float h)

Maps the effect of the specified layer to a certain area of the
matrix using relative values. Layer indexing (num ber) starts with
0. x and y describe the coordinates. w and h describe width and
height, respectively.

Storage Place Macro 327

© 2014 inoage GmbH

void MapLayerEffectPixel(int number, int
x, int y, int w, int h)

Maps the effect of the specified layer to a certain area of the
matrix using absolute values. Layer indexing (num ber) starts with
0. x and y describe the coordinates. w and h describe width and
height, respectively.

void GetLayerMapPixel(int number, int
map[])

Retrieves the mapping settings for a specified layer using absolute
values. Layer indexing (num ber) starts with 0. The values are
saved in a field (m ap[]).

map[0] = x coordinate (Pos X)
map[1] = y coordinate (Pos Y)
map[2] = width (Size X)
map[3] = height (Size Y)

void GetLayerMapVector(int number,
float map[])

Retrieves the mapping settings for a specified layer using relative
values. Layer indexing (num ber) starts with 0. The values are
saved in a field (m ap[]).

map[0] = x coordinate (Pos X)
map[1] = y coordinate (Pos Y)
map[2] = width (Size X)
map[3] = height (Size Y)

void MapLayerTileEffectVector(int
number, float x, float y, float w, float h)

Sets the tile function for the effect of the specified layer using
relative values. Layer indexing (num ber) starts with 0. x and y
describe the coordinates. w and h describe width and height,
respectively.

void MapLayerTileEffectPixel(int
number, int x, int y, int w, int h)

Sets the tile function for the effect of the specified layer using
absolute values. Layer indexing (num ber) starts with 0. x and y
describe the coordinates. w and h describe width and height,
respectively.

void SetLayerMapModeMirror(int
number, int state)

Sets the mapping mode of the specified layer. Possible values are

described here. Layer indexing (num ber) starts with 0.

void SetLayerMapModeTile(int number,
int state)

Sets the tile mode of the specified layer. Possible values are

described here. Layer indexing (num ber) starts with 0.

void GetLayerMapTileEffectVector(int
number, float map[])

Retrieves the tile settings for a specified layer using relative
values. Layer indexing (num ber) starts with 0. The values are
saved in a field (m ap[]).

map[0] = x coordinate (Pos X)
map[1] = y coordinate (Pos Y)
map[2] = width (Size X)
map[3] = height (Size Y)

void GetLayerMapTileEffectPixel(int
number, int map[])

Retrieves the tile settings for a specified layer using absolute
values. Layer indexing (num ber) starts with 0. The values are
saved in a field (m ap[]).

map[0] = x coordinate (Pos X)
map[1] = y coordinate (Pos Y)
map[2] = width (Size X)
map[3] = height (Size Y)

int IsLayerMapped(int number) Retrieves if the specified layer is mapped. Layer indexing (num ber
) starts with 0.

int GetLayerMapModeMirror(int number) Retrieves the currently used mirror mode of the specified layer.
Layer indexing (num ber) starts with 0.

int GetLayerMapModeTile(int number) Retrieves the currently used tile mode of the specified layer. Layer
indexing (num ber) starts with 0.

MADRIX 2 Script Help and Manual328

© 2014 inoage GmbH

void SetLayerVectorTileOffset(int
number, float x, float y)

Sets the tile offset settings using relative values. Layer indexing (
num ber) starts with 0. x describes offset x, while y represents
offset y.

void SetLayerPixelTileOffset(int number,
int x, int y)

Sets the tile offset settings using absolute values. Layer indexing (
num ber) starts with 0. x describes offset x, while y represents
offset y.

void GetLayerVectorTileOffset(int
number, float map[])

Retrieves the tile offset settings using relative values. Layer
indexing (num ber) starts with 0. The values are saved in a field (
m ap[]).

map[0] = x coordinate (offset x)
map[1] = y coordinate (offset y)

void GetLayerPixelTileOffset(int
number, int map[])

Retrieves the tile offset settings using absolute values. Layer
indexing (num ber) starts with 0. The values are saved in a field (
m ap[]).

map[0] = x coordinate (offset x)
map[1] = y coordinate (offset y)

void SetLayerVectorMapRotation(int
number, float value, int anim)

Sets the rotation value and status of the specified layer using
relative values. Layer indexing (num ber) starts with 0. va lue
describes the degrees. Valid values range from -200.0 to 200.0.

Valid values for anim are MAP_ANIM_OFF und MAP_ANIM_ON
. »Description

void SetLayerDegreeMapRotation(int
number, int value, int anim)

Sets the rotation value and status of the specified layer using
relative values. Layer indexing (num ber) starts with 0. va lue
describes the degrees. Valid values range from -720 to 720. Valid

values for anim are MAP_ANIM_OFF und MAP_ANIM_ON. »

Description

float GetLayerVectorMapRotation(int
number)

Retrieves the rotation value and status of the specified layer using
relative values. Layer indexing (num ber) starts with 0.

int GetLayerDegreeMapRotation(int
number)

Sets the rotation value and status of the specified layer using
absolute values. Layer indexing (num ber) starts with 0.

int IsLayerMapRotation(int number) Retrieves if the layer map rotation animation is active or not.
Layer indexing (num ber) starts with 0.

float GetLayerFrameId(int number) Returns the ID of the current frame of the specified layer. »
Description
Layer indexing (num ber) starts with 0.

void SetLayerFrameId(int number, float
value)

Sets the ID of the current frame of the specified layer. »
Description
Layer indexing (num ber) starts with 0.

float GetLayerFrameSteps(int number) Returns the number of frames which are between this and the last
call of the specified layer. »Description Layer indexing (num ber)
starts with 0.

float GetLayerFrameCount(int number) Retrieves the number of frames used by the specified layer. Layer
indexing (num ber) starts with 0.

int GetLayerOpacity(int number) Retrieves the opacity value of the specified layer. Layer indexing (
num ber) starts with 0.

void SetLayerOpacity(int number, int
value)

Sets the opacity value of the specified layer. Layer indexing (
num ber) starts with 0.

void SetLayerFilter(int number, int filter) Applies a Filter Effect (FX) to the specified layer. Layer indexing (
num ber) starts with 0. Valid values for filte r are »Filters

Storage Place Macro 329

© 2014 inoage GmbH

int GetLayerFilter(int number) Returns to which Filter Effect (FX) is applied to the specified layer.
Layer indexing (num ber) starts with 0.

Parameters

The following values must be used as parameters for different functions.

Value Description

Pause Function

PAUSE Activates a Storage Place to be paused. To be used with SetPause.

NOPAUSE Deactivates the pausing mode of a Storage Place. To be used with
SetPause.

Rotation Function

MAP_ANIM_ON Activates the rotation animation. The layer will rotate constantly.
To be used with SetLayerVectorMapRotation and
SetLayerDegreeMapRotation.

MAP_ANIM_OFF Deactivates the rotation animation. The layer will not rotate
constantly. To be used with SetLayerVectorMapRotation and
SetLayerDegreeMapRotation.

Part

VII

Main Output Macro 331

© 2014 inoage GmbH

7 Main Output Macro

7.1 Overview

Introduction

Main Output macros can be used to manipulate the final output of MADRIX. In this way, special

functions can be used to change the outcome and settings. These macros are written in MADRIX

Script.

Main Output macros are stored together with a MADRIX Setup file. Moreover, it is possible to save

macros as separate files. The file extension of a macro is .m m s. The extension of a compiled

macro is .m c m.

The button to call up the Main Output Macro can be found between the 'Fade' button

and the 'Freeze' button.

Functions Called By MADRIX

There are several functions called by MADRIX in order to let the macro react to different events.

void InitEffect()

void PreRenderEffect()

void PostRenderEffect()

void MatrixSizeChanged()

MADRIX 2 Script Help and Manual332

© 2014 inoage GmbH

If a function is not needed by a script, it is not necessary to implement it. Regarding InitEffec t,

PreRenderEffec t, and PostRenderEffec t a message is printed out if one of them is missing. This is

not an error, but only an information for the developer of the script.

I nitEffec t

(automatically included in a new script)

InitEffec t is called by MADRIX whenever the macro needs to be initialized. This is the case after

compiling and starting a new macro or when the user pressed the "Start" button of the Script

Editor. A macro can assume that any global variable is initialized with 0 and that any global field is

empty as long as it has not been initialized with a value.

This function is the right place to initialize global variables, reset any fields, set the speed of an

effect, or whatever is necessary to (re)start the macro.

PreRenderEffec t

(automatically included in a new script)

This function is called directly before PostRenderEffec t. It may be used if the macro has to

initialize any settings before an effect is rendered.

void InitEffect()
{

}
void PreRenderEffect()
{
 color c = {random(0, 255), random(0, 255)}; Clear(c);
}

This example uses the function PreRenderEffec t to fill the matrix once after initializing a random

color for this task.

Main Output Macro 333

© 2014 inoage GmbH

PostRenderEffec t

(automatically included in a new script)

This function is called after an effect has been rendered completely. Certain functions might want

to be called. That could be a filter, for example. The number of calls per second depends on the

currently set speed of the effect. It can be received with the help of the function GetSpeed() and

set with the function SetSpeed.

MartrixSizeChanged

(automatically included in a new script)

Mat ixSizeChanged is called after the size of the matrix has been changed. This may be due to a

change to the matrix settings or because a new map setting was set, e.g. caused by the call of a

map function.

Standard Outline

When you open the Main Output Macro Editor, the empty standard macro will look like this::

@scriptname="";
@author="";
@version="";
@description="";

void InitEffect()
{

}

void PreRenderEffect()
{

}

void PostRenderEffect()
{

}

void MatrixSizeChanged()
{
InitEffect();

}

MADRIX 2 Script Help and Manual334

© 2014 inoage GmbH

7.2 Functions

Specific Resources

Functions called by MADRIX
Main Output Macro: Available Functions
Parameters

General Resources

Keyword Search
List Of Functions (Alphabetical Order)
List Of Functions (Grouped)
List Of Global Variables and Constants
List Of Operations
List Of Structures
Table Of Frequencies
Table Of Notes

Available Functions

Standard Functions

It is useful to consult the List of Functions (Alphabetical Order) for non-specific functions.

The Main Output macro offers special functions to reflect the options available to the user in the

user interface of MADRIX, like the Freeze function or the Cue List.

Functions Provided By The Main Output Macro

These functions are not available in the MAS Script effect, in the Macros for effects, and not in

the Storage Place Macro.

Function Description

int GetFadeType() Returns the current fade type. »Example

Main Output Macro 335

© 2014 inoage GmbH

void SetFadeType(int fadetype) Set the type of fade. Valid values are CROSSFADE, WHITEFADE,
BLACKFADE, COLORFADE. »Example

color GetFadeColor() Returns the color that is selected for the color-fade. »Example

void SetFadeColor(color fadecolor) Set the color of the color-fade. »Example

float GetFadeTime() Returns the time in seconds that is used to fade between A and B.
»Example

void SetFadeTime(float fadetime) Set the fade time in seconds. Valid values range from 0 to 3600.0
»Example

int GetFadeValue() Returns the value/position of the fader. »Example

void SetFadeValue(int fadervalue) Set the value for the position of the fader. Valid values range from
0 to 255. »Example

int GetFreeze() Returns the status of the freeze function. »Example

void SetFreeze(int freeze/unfreeze) Set the freeze function to be activated or deactivated. »Example

int GetMasterFader() Returns the value/position of the Master Fader, which determines
the brightness of the main output. »Example

void SetMasterFader(int
masterfadervalue)

Set the value of the Master Fader. Valid values range from 0 to
255. »Example

int GetAudioFader() Returns the value/position of the audio fader, which determines
the audio input level. »Example

void SetAudioFader(int audiofadervalue) Set the value of the audio fader. Valid values range from 0 to 255.
»Example

void CuelistStop() Stop the Cue List. »Example

void CuelistPlay() Start the Cue List. Useful when a duration is set. Otherwise,
'CuelistGo' is performed. »Example

void CuelistGo() Jump ahead one step in the Cue List. »Example

void CuelistBack() Go back one step in the Cue List. »Example

void CuelistGoto(int cuelistentry) Go to a specific Cue List entry. »Example

int CuelistCurrentCue() Returns the currently used Cue in the Cue List. A return value of -
1 means that the Cue List is not running. A return value of 0
means that Cue 1 is active, a value of 1 means that Cue 2 is
active, and so on. »Example

int CuelistCount() Returns the total number of Cues in the Cue List.

int GetStorageSpeedMaster(int storage) Returns the value of the Speed Master for Storage A or B. Valid
values are STORAGE_A, STORAGE_B, and a speed range from -
10.0 to 10.0 for the return value. »Example

void SetStorageSpeedMaster(int
storage, float speed)

Set the value of the Speed Master for a specific Storage Place.
Valid values are STORAGE_A, STORAGE_B. »Example

int GetStoragePause(int storage) Returns the status of the pause function of Storage A or B. Valid
values are STORAGE_A, STORAGE_B. »Example

void SetStoragePause(int storage, int
pause/nopause)

Set the pause mode to be activated or deactivated for Storage A
or B. Valid values are STORAGE_A, STORAGE_B for storage as
well as PAUSE, NOPAUSE. »Example

void GetStoragePlace(int storage) Returns the currently selected Storage Place of Storage A or B
with a value between 0 and 59. Valid values are STORAGE_A,
STORAGE_B. »Example

MADRIX 2 Script Help and Manual336

© 2014 inoage GmbH

void SetStoragePlace(int storage, int
place, int autofade/noautofade)

Set a specific Storage Place to be activated/selected in Storage A
or B. Valid values are STORAGE_A, STORAGE_B for storage, and
a place between 0 and 59. The third value is optional and valid
parameters are: WITH_AUTOFADE, WITHOUT_AUTOFADE.
Activated by default is autofade. (When the currently selected
Storage Placecan be seen in the output window and a new Storage
Place without autofade is set with this function, autofade will still be
used (without_autofade will be overwritten) to provide a smooth
fade on the output.) »Example

int GetStorageSubMaster(int storage) Returns the value of the submaster of Storage A or B. Valid values
are STORAGE_A, STORAGE_B. »Example

void SetStorageSubMaster(int storage,
int submastervalue)

Returns the currently selected Storage Place of Storage A or B.
Valid values for storage are STORAGE_A, STORAGE_B, and a
value range from 0 to 255 for the subm aste rva lue. »Example

int GetStorageFullState(int storage, int
place)

Returns 1 if the standard settings of a Storage Place of either
Storage A or B have been modified, i.e. if an effect has been set
up on a Storage Place. Valid values for storage are STORAGE_A,
STORAGE_B. place describes the Storage Place. Returns 0 if the
specified Storage Place remains unchanged.

void SetFilterColor(color c) Sets the color that will be used for the color filter of the main
output. »Using Colors

color GetFilterColor() Retrieves the color that is currently set for the main output color
filter. »Using Colors

void SetBlackout(int mode) Activates or deactivates a black out of the output. Valid values for
mode are BLACKOUT_OFF or BLACKOUT_ON.

int GetBlackout() Returns if the black out is active or not.

void SetStorageFilter(int storage, int
filter)

Applies a Filter Effect (FX) to the Storage Place. Valid values for
storage are STORAGE_A, STORAGE_B Valid values for filte r are »
Filters

int GetStorageFilter() Returns which Filter Effect (FX) is applied to the Storage Place.

void ImportStoragePlace(int storage, int
place, string name)

Automatically loads a single MADRIX Storage Place. Valid values
for storage are STORAGE_A, STORAGE_B. Valid values for p lace
are 0 to 59 (Indexing starts with 0). Valid values for nam e are *.
mef file names and the specific location on the harddisk; for
example: "C :\Effect.mef". It is recommended to only use this
function in InitEffe ct().

void ImportStorage(int storage, string
name)

Automatically loads a complete Storage Area. Valid values for
storage are STORAGE_A, STORAGE_B. Valid values for nam e are
*.mss file names and the specific location on the harddisk; for
example: "C :\Storage.mss". It is recommended to only use this
function in InitEffe ct().

int ImportPatch(string file) Automatically loads a Patch file. Valid values for file are *.mpf file
names and the specific location on the harddisk in inverted
commas; for example: "C :\Patch01.mpf". The function returns an
integer value. Valid values for int are 1 (loaded usccessfully) and 0
(failed to load). It is recommended to only use this function in
InitEffe ct(). Please remove InitEffe ct() from MatrixSizeChanged()
in this case. If used in other parts of the Macro, MatrixSizeChanged
() should be included in InitEffe ct().

void Filter(int filter) Renders a filter over the matrix. »Valid parameters (Filters) »
Description

Main Output Macro 337

© 2014 inoage GmbH

Parameters

The following values (defines) must be used as parameters for the functions provided above.

MADRIX 2 Script Help and Manual338

© 2014 inoage GmbH

Value Description

Fade Types

CROSSFADE Selects the Cross-fade. To be used with SetFadeType.

WHITEFADE Selects the White-fade. To be used with SetFadeType.

BLACKFADE Selects the Black-fade. To be used with SetFadeType.

COLORFADE Selects the Color-fade with the currently selected color. To be

used with SetFadeType.

HWIPEFADE Selects the Horizontal Wipe as fade type. To be used with

SetFadeType.

VWIPEFADE Selects the Vertical Wipe as fade type. To be used with

SetFadeType.

HXWIPEFADE Selects the Horizontal Cross Wipe as fade type. To be used with

SetFadeType.

VXWIPEFADE Selects the Vertical Cross Wipe as fade type. To be used with

SetFadeType.

HSLIDEFADE Selects the Horizontal Slide as fade type. To be used with

SetFadeType.

VSLIDEFADE Selects the Vertical Slide as fade type. To be used with

SetFadeType.

HXSLIDEFADE Selects the Horizontal Cross Slide as fade type. To be used with

SetFadeType.

VXSLIDEFADE Selects the Vertical Cross Slide as fade type. To be used with

SetFadeType.

Freeze Function

FREEZE Freezes the main output instantly. To be used with SetFreeze.

UNFREEZE Unfreezes the main output. To be used with SetFreeze.

Storage Area Selection

STORAGE_A Selects Storage Area A. To be used with GetStorageSpeedMaster,
SetStorageSpeedMaster, GetStoragePause, SetStoragePause,
GetStoragePlace, SetStoragePlace, GetStorageSubMaster,
SetStorageSubMaster, GetStorageFullState, SetStorageFilter,
ImportStoragePlace, and ImportStorage.

STORAGE_B Selects Storage Area B. To be used with GetStorageSpeedMaster,
SetStorageSpeedMaster, GetStoragePause, SetStoragePause,
GetStoragePlace, SetStoragePlace, GetStorageSubMaster,
SetStorageSubMaster, GetStorageFullState, SetStorageFilter,
ImportStoragePlace, and ImportStorage.

Autofade Function

WITH_AUTOFADE Activates autofade. To be used with SetStoragePlace.

WITHOUT_AUTOFADE Deactivates autofade. To be used with SetStoragePlace.

Pause Function

PAUSE Activates a Storage Place to be paused. To be used with
SetStoragePause.

NOPAUSE Deactivates the pausing mode of a Storage Place. To be used with
SetStoragePause.

Black Out Function

BLACKOUT_ON Activates the black out of the output.

BLACKOUT_OFF Deactivates the black out of the output.

Main Output Macro 339

© 2014 inoage GmbH

7.3 Examples

GetFadeType

Select a different fade type while running the script and monitor the 'Script output' to see the

result.

@scriptname="get fade type test";
@author="";
@version="";
@description="";

void InitEffect()
{}

void PreRenderEffect()
{
switch(GetFadeType())
{
 case CROSSFADE: WriteText("CrossFade");break;
 case WHITEFADE: WriteText("WhiteFade");break;
 case BLACKFADE: WriteText("BlackFade");break;
 case COLORFADE: WriteText("ColorFade");break;
}

}

void PostRenderEffect()
{}

(Description)

SetFadeType

Watch the fade area while running the script to see how the fade type is switched.

@scriptname="set fade type test";
@author="";
@version="";
@description="";

int Value=0;
void InitEffect()
{}

void PreRenderEffect()
{
Value%=200;// range 0...200
switch(Value)

MADRIX 2 Script Help and Manual340

© 2014 inoage GmbH

{
 case 0: SetFadeType(CROSSFADE);break;
 case 50: SetFadeType(WHITEFADE);break;
 case 100: SetFadeType(BLACKFADE);break;
 case 150: SetFadeType(COLORFADE);break;
}
Value++;

}

void PostRenderEffect()
{}

(Description)

GetFadeColor

Select a different color for the color-fade while running the script and monitor the 'Script output'

to see the result.

@scriptname="get fade color values";
@author="";
@version="";
@description="";

color c;
void InitEffect()
{}

void PreRenderEffect()
{
c=GetFadeColor();
WriteText("Red: "+(string)c.r+", Green: "+(string)c.g+", Blue: "+(string)c.b+",

 White:"+(string)c.w);
}

void PostRenderEffect()
{}

(Description)

SetFadeColor

Monitor the color window next to the color-fade button to see the result.

@scriptname="set fade color red value";
@author="";
@version="";
@description="";

color c;

Main Output Macro 341

© 2014 inoage GmbH

void InitEffect()
{}

void PreRenderEffect()
{
c.r++;
c.r%=256;// range 0...255
SetFadeColor(c);

}

void PostRenderEffect()
{}

(Description)

GetFadeTime

Increase or decrease the fade time and monitor the 'Script output' while running the script.

@scriptname="get fade time";
@author="";
@version="";
@description="";

float fTime;
void InitEffect()
{}

void PreRenderEffect()
{
fTime=GetFadeTime();
WriteText("FadeTime: "+(string)fTime);

}

void PostRenderEffect()
{}

(Description)

SetFadeTime

Watch the fade time box while running the script.

@scriptname="set fade time";
@author="";
@version="";
@description="";

float fTime=0.0;
void InitEffect()
{}

MADRIX 2 Script Help and Manual342

© 2014 inoage GmbH

void PreRenderEffect()
{
fTime+=0.1;
if(fTime>60.0)

fTime=0.0;// range 0...60
SetFadeTime(fTime);

}

void PostRenderEffect()
{}

(Description)

GetFadeValue

Slide the fader from A to B or back and monitor the 'Script output' while running the script.

@scriptname="get fader value A-B ";
@author="";
@version="";
@description="";

int fValue;
void InitEffect()
{}

void PreRenderEffect()
{
fValue=GetFadeValue();
WriteText((string)fValue);

}

void PostRenderEffect()
{}

(Description)

SetFadeValue

Watch the fader closely to see the result of the script.

@scriptname="set fader value A-B";
@author="";
@version="";
@description="";

int Value=0;
void InitEffect()
{}

Main Output Macro 343

© 2014 inoage GmbH

void PreRenderEffect()
{
Value++;
Value%=256;// range 0...255
SetFadeValue(Value);

}

void PostRenderEffect()
{}

(Description)

GetFreeze

To test this script, use the 'Freeze' button and monitor the 'Script output' while running the script.

@scriptname="get freeze button test";
@author="";
@version="";
@description="";

void InitEffect()
{}

void PreRenderEffect()
{
if(GetFreeze())
 WriteText("Freeze button is pressed");

else
 WriteText("Freeze button is not pressed");
}

void PostRenderEffect()
{}

(Description)

SetFreeze

Watch the 'Freeze' button to see the effect of the script.

@scriptname="freeze, unfreeze test";
@author="";
@version="";
@description="";

int Value=0;
void InitEffect()
{}

MADRIX 2 Script Help and Manual344

© 2014 inoage GmbH

void PreRenderEffect()
{
Value++;
Value%=100;// range 0...100
switch(Value)
{
 case 5: SetFreeze(FREEZE);break;
 case 55: SetFreeze(UNFREEZE);break;
}

}

void PostRenderEffect()
{}

(Description)

GetMasterFader

Adjust the Master Fader while running the script and monitor the 'Script output'.

@scriptname="get fader value from master";
@author="";
@version="";
@description="";

void InitEffect()
{}

void PreRenderEffect()
{
WriteText("MasterFader: "+(string)GetMasterFader());

}

void PostRenderEffect()
{}

(Description)

SetMasterFader

Watch the Master Fader closely to see the result of the script.

@scriptname="set master fader value";
@author="";
@version="";
@description="";

int Value=0;
void InitEffect()
{}

Main Output Macro 345

© 2014 inoage GmbH

void PreRenderEffect()
{
Value++;
Value%=256;// range 0...255
SetMasterFader(Value);

}

void PostRenderEffect()
{}

(Description)

GetAudioFader

Adjust the audio fader while running the script and monitor the 'Script output'.

@scriptname="get fader value from audio";
@author="";
@version="";
@description="";

void InitEffect()
{}

void PreRenderEffect()
{
WriteText("AudioFader: "+(string)GetAudioFader());

}

void PostRenderEffect()
{}

(Description)

SetAudioFader

Monitor the audio fader closely to see the result of the script.

@scriptname="set audio fader";
@author="";
@version="";
@description="";

int Value=0;
void InitEffect()
{}

void PreRenderEffect()
{
Value++;
Value%=256;// range 0...255

MADRIX 2 Script Help and Manual346

© 2014 inoage GmbH

SetAudioFader(Value);
}

void PostRenderEffect()
{}

(Description)

CuelistStop/CuelistPlay

To test this script, a playlist with duration and minimal 2 Cue List entries is required.

@scriptname="cue list stop/start test";
@author="";
@version="";
@description="";

int Value=0;
void InitEffect()
{}

void PreRenderEffect()
{
Value++;
Value%=500;// range 0...500
switch(Value)
{
 case 10: CuelistStop();break;
 case 260: CuelistPlay();break;
}

}

void PostRenderEffect()
{}

(Description)

CuelistGo/CuelistBack

To test this script, a playlist with duration and minimal 2 Cue List entries is required.

@scriptname="cue list go/back test";
@author="";
@version="";
@description="";

int Value=0;
void InitEffect()
{}

void PreRenderEffect()

Main Output Macro 347

© 2014 inoage GmbH

{

Value++;
Value%=500;// range 0...500
switch(Value)
{
 case 10: CuelistGo();break;
 case 260: CuelistBack();break;
}

}

void PostRenderEffect()
{}

(Description)

CuelistGoto

To test this script, a playlist without duration and minimal 9 Cue List entries is required.

@scriptname="cue list goto test";
@author="";
@version="";
@description="";

int Value=0;
void InitEffect()
{}

void PreRenderEffect()
{

Value++;
Value%=250;// range 0...250
if(Value%50==0)

CuelistGoto(Value/25); // skip 1,3,5,7,9,1,3,...
//CuelistGoto(Value/50); // skip 1,2,3,4,5,6,1,2,...

}

void PostRenderEffect()
{}

(Description)

CuelistCurrentCue

To test this script, create a Cue List, activate several Cues, and monitor the 'Script output'.

@scriptname="CurrentCue";
@author="jky / info@madrix.com";
@version="1.0 Madrix 2.8a";

MADRIX 2 Script Help and Manual348

© 2014 inoage GmbH

@description="View current item from Cue List";

void InitEffect()
{}

void PreRenderEffect()
{}

void PostRenderEffect()
{
 WriteText((string)CuelistCurrentCue());
}

(Description)

GetStorageSpeedMaster

Adjust the Speed Master of Storage area A or B while running the script and monitor the 'Script

output'.

@scriptname="get Speed Master test";
@author="";
@version="";
@description="";

void InitEffect()
{}

void PreRenderEffect()
{
WriteText("SpeedA:"+(string)GetStorageSpeedMaster(STORAGE_A)
+" SpeedB:"+(string)GetStorageSpeedMaster(STORAGE_B));
}

void PostRenderEffect()
{}

(Description)

SetStorageSpeedMaster

This is script is best tested with the SCE Colorscroll effect. Monitor Preview A and B as well as the

Speed Master faders to see the results of the script.

@scriptname="Speed Master test";
@author="";
@version="";
@description="";

float Value=0.0;

Main Output Macro 349

© 2014 inoage GmbH

void InitEffect()
{}

void PreRenderEffect()
{

Value+=0.1;
if(Value>10.0)

Value=-10.0;// range 0...255

SetStorageSpeedMaster(STORAGE_A,Value);// storage A
SetStorageSpeedMaster(STORAGE_B,Value/2.0);// storage B

}

void PostRenderEffect()
{}

(Description)

GetStoragePause

To test this script, press the 'Pause' button of Storage area A or B and monitor the 'Script output'.

@scriptname="get storage pause test";
@author="";
@version="";
@description="";

void InitEffect()
{}

void PreRenderEffect()
{
if(GetStoragePause(STORAGE_A))
 WriteText("Storage A paused");
else
 WriteText("Storage A running");
if(GetStoragePause(STORAGE_B))
 WriteText("Storage B paused");
else
 WriteText("Storage B running");
}

void PostRenderEffect()
{}

(Description)

MADRIX 2 Script Help and Manual350

© 2014 inoage GmbH

SetStoragePause

This is script is best tested with the SCE Colorscroll effect. Monitor the 'Pause' buttons of Storage

A and B to see the effects of the script.

@scriptname="storage no-/pause test";
@author="";
@version="";
@description="";

int Value=0;
void InitEffect()
{}

void PreRenderEffect()
{

Value++;
Value%=200;// range 0...200

switch(Value)
{

 case 10: SetStoragePause(STORAGE_A,PAUSE);break;// storage A
case 60: SetStoragePause(STORAGE_B,PAUSE);break;// storage B

 case 110: SetStoragePause(STORAGE_A,NOPAUSE);break;// storage A
case 160: SetStoragePause(STORAGE_B,NOPAUSE);break;// storage B

}
}
void PostRenderEffect()
{}

(Description)

GetStoragePlace

While running the script, select different Storage Places across Storage A or B and monitor the

'Script output'. The currently selected Storage Place number minus 1 should be displayed.

@scriptname="get storageplace test";
@author="";
@version="";
@description="";

void InitEffect()
{}

void PreRenderEffect()
{
 WriteText("Storage A:"+(string)GetStoragePlace(STORAGE_A)
 +" Storage B:"+(string)GetStoragePlace(STORAGE_B));
}

Main Output Macro 351

© 2014 inoage GmbH

void PostRenderEffect()
{}

(Description)

SetStoragePlace

Monitor the effect sections A and B as well as the two Storage Areas (A and B) to see the results

of the script.

@scriptname="test setStoragePlace with and without autofade";
@author="";
@version="";
@description="";

int Value=0;
int place=0;
void InitEffect()
{
SetFadeTime(1.0);// better for demonstration

}

void PreRenderEffect()
{
Value++;
Value%=1000;// range 0...1000
switch(Value)
{
case 150: SetStoragePlace(STORAGE_A,place,WITH_AUTOFADE);break;

 // storage A with autofade
case 300: SetStoragePlace(STORAGE_B,place,WITH_AUTOFADE);break;

 // storage B with autofade
case 450: place++;

 case 600: SetStoragePlace(STORAGE_A,place,WITHOUT_AUTOFADE);break;
// storage A without autofade, if FaderValue not an place A
case 750: SetStoragePlace(STORAGE_B,place,WITHOUT_AUTOFADE);break;
// storage B without autofade, if FaderValue not an place B
case 900: place++;
}
if(place>59) // place range 0...59

place=0;
}

void PostRenderEffect()
{}

(Description)

MADRIX 2 Script Help and Manual352

© 2014 inoage GmbH

GetStorageSubMaster

Adjust the submasters of Storage A and B ('Sub' button) and monitor the 'Script output' while

running the script.

@scriptname="storage submaster get test";
@author="";
@version="";
@description="";

int subA;
int subB;
void InitEffect()
{}

void PreRenderEffect()
{
subA=GetStorageSubMaster(STORAGE_A);// storage A
subB=GetStorageSubMaster(STORAGE_B);// storage B
WriteText("Submaster A:" +(string)subA +", Submaster B:" +(string)subB);

}

void PostRenderEffect()
{}

(Description)

SetStorageSubMaster

Select a SCE effect in both effect areas and monitor the two previews (Preview A and B) while

running the script.

@scriptname="storage submaster set test";
@author="";
@version="";
@description="";

int Value=0;
void InitEffect()
{}

void PreRenderEffect()
{

Value++;
Value%=256;// range 0...255

SetStorageSubMaster(STORAGE_A,Value);// storage A
SetStorageSubMaster(STORAGE_B,255-Value);// storage B
WriteText("SubA: "+(string)Value+", SubB: "+(string)(255-Value));

}

Main Output Macro 353

© 2014 inoage GmbH

void PostRenderEffect()
{}

(Description)

Part

VIII

Imprint & Copyright 355

© 2014 inoage GmbH

8 Imprint & Copyright

Company And Address

inoage GmbH

Wiener Straße 56

D-01219 Dresden

Germany

Managing Directors: Christian Hertel, Sebastian Pinzer, Sebastian Wissmann

Phone: +49 351 482 056 30

Fax: +49 351 482 056 31

WWW: http://www.madrix.com

E-mail: info@madrix.com

Copyright

MADRIX is a trademark of inoage GmbH.

All other company names and/or product names are trademarks and/or entered trademarks of their

respective holders. The product might not always be conforming to the presentation, features,

and performances. Technical data can differ slightly, depending on the operating system and the

chosen hardware.

We withhold the option of changes without notification. inoage GmbH does not give any guaranty

for function capability for a certain purpose, the marked ability or other features of the product.

No other guaranty claims, on legal or other terms, can be enforced.

http://www.madrix.com
mailto:info@madrix.com

MADRIX 2 Script Help and Manual356

© 2014 inoage GmbH

Under no circumstances does inoage GmbH take on the responsibility for liabilities for faults for

loses in sales volume or profits, that occur through the usage of the product, through the

serviceability, through abuse, happenings, circumstances or actions, that we have no influence

on. No matter if the damages were caused by the holder of the product or a third person.

Copyright (c) 2001 - 2014 inoage GmbH. All rights reserved.

Index 357

© 2014 inoage GmbH

Index
- - -
- 62, 161

-- 62, 161

- ! -
! 62, 161

!= 56, 62, 161

- % -
% 62, 161

%= 62, 161

- & -
&& 62, 161

- * -
* 62, 161

*.macs 185

*.mas 185

*.mcm 220, 322, 331

*.mms 220, 322, 331

*/ 82

*= 62, 161

- . -
. operator 50

- / -
/ 62, 161

/* 82

// 82

/= 62, 161

- @ -
@author 82, 155

@description 82, 155

@name 82, 155

@version 82, 155

- [-
[] operator 53

- { -
{ 67

- | -
|| 62, 161

- } -
} 67

- + -
+ 62, 161

++ 62, 161

+= 62, 161

- < -
< 56, 62, 161

<= 56, 62, 161

- = -
= 161

- - -
-= 62, 161

MADRIX 2 Script Help and Manual358

© 2014 inoage GmbH

- = -
== 56, 62, 161

- > -
> 56, 62, 161

>= 56, 62, 161

- 4 -
43 Hz 209

- 5 -
50 Hz 209

- A -
A 170

A# 170

abs 128, 144, 147

absolute coordinates 83

AddColor 85, 232, 234, 238, 240, 243, 246, 250,
254, 258, 263, 270, 274, 287, 292, 300, 305, 316

AddPixelTransposeEntry 128, 144

AddSparkleColor 246

ALPHA 155

AQUA 92, 155

arccos 128, 144, 147

arccosDeg 128, 144, 147

arcsin 128, 144, 147

arcsinDeg 128, 144, 147

arctan 128, 144, 147

arctanDeg 128, 144, 147

assignment 62

author 82

- B -
backward 209

BLACK 92, 155

BLACK_ALPHA 155

BLACKFADE 334

block 67, 68

BLUE 92, 155

bool 50

bpm 209, 224

break 74, 128

BROWN 155

Button 190

- C -
C 170

C# 170

calling convention 83

case 56, 71, 128

ceil 128, 144

ChangeBrightness 128, 144

CheckScriptEngineVersion 128, 144

CheckSoftwareVersion 128, 144

CHM_LEFT 305, 307

CHM_MONO 305, 307

CHM_RIGHT 305, 307

CHM_STEREO 305, 307

Clear 128, 144

Clear Compiler Messages 34

Clear Messages 34

ClearAlpha 128, 144

ClearColor 128, 144

CM_LOOP 243, 246, 254, 258, 270, 274, 292, 316

CM_RANDOM 243, 246, 254, 258, 270, 274, 292,
316

CM_SHUFFLE 243, 246, 254, 258, 270, 274, 292,
316

col.r 50

color 50, 52, 155, 162

Color Picker 85

Color Ramp 85

Color table 85, 190

COLOR_AND_ALPHA 155

COLOR_BG 250

COLOR_BR 250

COLOR_GB 250

COLOR_GR 250

COLOR_RB 250

COLOR_RG 250

COLORFADE 334

ColorReplace 128, 144

colors 39, 92

Comment 82

compare operation 62

Index 359

© 2014 inoage GmbH

compare strings 56

Compile 34

Compiled scripts 34

concatenate string 62

const 47, 128

Constant 47

continue 74, 128

control loop 74

conversion 52

cos 128, 144, 147

cosDeg 128, 144, 147

cosH 128, 144, 147

cosHDeg 128, 144, 147

CreatePixelTransposeTable 128, 144

CROSSFADE 334

ctrlbutton 190

ctrlbutton2 190

ctrlbutton3 190

ctrlbutton4 190

ctrlcolor 190

ctrlcolortable 190

ctrledit 190

ctrledit2 190

ctrledit3 190

ctrledit4 190

ctrlslider 190

CuelistBack 334, 339

CuelistCount 334

CuelistCurrentCue 334

CuelistGo 334, 339

CuelistGoto 334, 339

CuelistPlay 334, 339

CuelistStop 334, 339

curly bracket 67

CURVE_ABSSIN 265

CURVE_PHASE 265

CURVE_SAWTOOTH_DOWN 265

CURVE_SAWTOOTH_UP 265

CURVE_SIN 265

CURVE_TRIANGLE 265

CYAN 155

- D -
D 170

D# 170

DARK_GRAY 155

Data type 50, 52

Data types 46

date 50, 52, 162

Declaration 47

default 71, 128

deg2rad 128, 144, 147

description 82

Detonate 246

Dim 128, 144

DimPixel 128, 144

DimPixelArea 128, 144

DIR_CIRCLE_INWARDS 238

DIR_CIRCLE_OUTWARDS 238

DIR_DL 155

DIR_DOWN 155, 250, 287, 305

DIR_DR 155

DIR_HORIZONTAL 296, 314

DIR_HV 296, 314

DIR_INWARDS 238, 265, 274, 302, 309

DIR_INWARDS_CIRCLE 240, 310

DIR_INWARDS_ELLIPSE 240, 310

DIR_INWARDS_H 240, 310

DIR_INWARDS_RECT 240, 310

DIR_INWARDS_SQUARE 240, 310

DIR_INWARDS_V 240, 310

DIR_LEFT 155, 250, 287, 305

DIR_NONE 155

DIR_OUTWARDS 238, 265, 274, 302, 309

DIR_OUTWARDS_CIRCLE 240, 310

DIR_OUTWARDS_ELLIPSE 240, 310

DIR_OUTWARDS_H 240, 310

DIR_OUTWARDS_RECT 240, 310

DIR_OUTWARDS_SQUARE 240, 310

DIR_OUTWARDS_V 240, 310

DIR_RADIAL 238

DIR_RIGHT 155, 250, 287, 305

DIR_UL 155

DIR_UP 155, 250, 287, 305

DIR_UR 155

DIR_VERTICAL 296, 314

DoPreRender 42, 185, 188

Double-quoted strings 71

draw 83

DRAW_CIRCLE 234, 243, 246, 254, 258, 270, 274,
292, 302, 316

DRAW_CIRCLE_EXPLODE 270, 292, 316

DRAW_CIRCLE_IMPLODE 270, 292, 316

DRAW_CROSS 234, 243, 246, 254, 270, 274, 292,
302, 316

MADRIX 2 Script Help and Manual360

© 2014 inoage GmbH

DRAW_CROSS_EXPLODE 270, 292, 316

DRAW_CROSS_IMPLODE 270, 292, 316

DRAW_DIAMOND 234, 243, 246, 254, 258, 270,
274, 292, 316

DRAW_DIAMOND_EXPLODE 270, 292, 316

DRAW_DIAMOND_IMPLODE 270, 292, 316

DRAW_LINE 234, 243

DRAW_RANDOM 234, 243, 246, 254, 270, 274,
292, 316

DRAW_RECT 234, 243, 246, 254, 258, 270, 274,
292, 302, 316

DRAW_RECT_EXPLODE 270, 292, 316

DRAW_RECT_IMPLODE 270, 292, 316

DRAW_STAR 234, 243, 246, 254, 270, 274, 292,
302, 316

DRAW_STAR_EXPLODE 270, 292, 316

DRAW_STAR_IMPLODE 270, 292, 316

DRAW_TEXT 254

DrawPixelArea 97, 128, 144

DrawPixelCircle 128, 144

DrawPixelCross 128, 144

DrawPixelDiamond 128, 144

DrawPixelEllipse 128, 144

DrawPixelLine 128, 144

DrawPixelRect 128, 144

DrawPixelStar 128, 144

DrawPixelText 128, 144, 334

DrawVectorCircle 128, 144

DrawVectorCross 128, 144

DrawVectorDiamond 128, 144

DrawVectorEllipse 128, 144

DrawVectorLine 128, 144

DrawVectorRect 128, 144

DrawVectorStar 128, 144

DrawVectorText 128, 144, 334

dynamic memory 53

- E -
E 170

Edit 190

EFFECT_ABS_SINE 285

EFFECT_CIRCLE 265

EFFECT_HELIX 265

EFFECT_RADAR 265

EFFECT_SAWTOOTH_DOWN 285

EFFECT_SAWTOOTH_UP 285

EFFECT_SINE_WAVE 285

EFFECT_TRIANGLE 285

else 68, 128

else if 68

EnableFrameFade 128, 144

EnableLayerFrameFade 325

endswith 56, 128, 144

Examples 171

ExecutePixelTranspose 128, 144

Exemplary Scripts 171

exp 128, 144, 147

EXPLOSION_SHAPE_DIAMOND 246

EXPLOSION_SHAPE_RADIAL 246

EXPLOSION_SHAPE_RANDOM 246

EXPLOSION_SHAPE_SPHERE 246

EXPLOSION_SHAPE_SPHERE_GLOW 246

EXPLOSION_SHAPE_SPIRAL 246

EXPLOSION_SHAPE_STAR 246

expression 62

Extension 185, 220

Extract 56

- F -
F 170

F# 170

FadeAllColors 85, 238, 250, 287, 300

FadeNoneColors 85, 238, 250, 287, 300

FaderBox 85

FALSE 50, 128

Faster script effects 209

field 42, 53

File extension 185, 220

File operations 78

fill 83

FILL_CIRCLE 234, 243, 246, 254, 258, 270, 274,
292, 302, 316

FILL_CIRCLE_EXPLODE 270, 292, 316

FILL_CIRCLE_IMPLODE 270, 292, 316

Fill_DIAMOND 234, 243, 246, 254, 258, 270, 274,
292, 316

FILL_DIAMOND_EXPLODE 270, 292, 316

FILL_DIAMOND_IMPLODE 270, 292, 316

FILL_RECT 234, 243, 246, 254, 258, 270, 274, 292,
302, 316

FILL_RECT_EXPLODE 270, 292, 316

FILL_RECT_IMPLODE 270, 292, 316

FillPixelCircle 128, 144

FillPixelDiamond 128, 144

Index 361

© 2014 inoage GmbH

FillPixelEllipse 128, 144

FillPixelRect 128, 144

FillVectorCircle 128, 144

FillVectorDiamond 128, 144

FillVectorEllipse 128, 144

FillVectorRect 128, 144

Filter 97, 128, 144

Filter(int filter) 93

FILTER_BLUE 93, 155

FILTER_BLUE_WHITE 93, 155

FILTER_BLUR 93, 155

FILTER_BLUR_BSPLINE 93, 155

FILTER_BLUR_CATMULL_ROM 93, 155

FILTER_BLUR_GAUSS 93, 155

FILTER_BLUR_MITCHELL 93, 155

FILTER_BRIGHTEN 93, 155

FILTER_DARKEN 93, 155

FILTER_EDGES 155

FILTER_EDGES_POPUP 155

FILTER_EMBOSS 155

FILTER_EMBOSS_POPUP 155

FILTER_GREEN 93, 155

FILTER_GREEN_BLUE 93, 155

FILTER_GREEN_BLUE_WHITE 155

FILTER_GREEN_WHITE 93, 155

FILTER_GREYSCALE 93, 155

FILTER_INVERT_COLOR 93, 155

FILTER_INVERT_H_MATRIX 155

FILTER_INVERT_HV_MATRIX 155

FILTER_INVERT_V_MATRIX 155

FILTER_NONE 93, 155

FILTER_RED 93, 155

FILTER_RED_BLUE 93, 155

FILTER_RED_BLUE_WHITE 93, 155

FILTER_RED_GREEN 93, 155

FILTER_RED_GREEN_BLUE 93, 155

FILTER_RED_GREEN_WHITE 93, 155

FILTER_RED_WHITE 93, 155

FILTER_SHARPE 93, 155

FILTER_WHITE 93, 155

Filters 93

findstring 56, 128, 144

FireRocket 246

First Example 38

Fixed frame rate 216

Fixed render frequency 216

float 50, 52

Floating point frames 216

fmax 128, 144

fmin 128, 144

fmod 128, 144

font 162

for 74, 128

forward 209

fps 209

frame count 188, 213

frame ID 188, 213, 220, 223

framesteps 209, 216

frandom 128, 144, 147

FREEZE 334

Frequency 119, 170

frequency overview 164

FUCHSIA 92, 155

Function 41, 42

- G -
G 170

G# 170

GetAllIntervals 128, 144, 147

GetAllNoteValues 123, 128, 144, 147

GetAmplify 287, 291, 292, 296, 300, 302

GetAmplitude 265

GetAngle 238

GetAnimationSpeed 228

GetApplicationPath 128, 144

GetAudioFader 334, 339

GetAutostart 281

GetBandCount 287, 291, 296, 300

GetBandMode 287

GetBassTone 128, 144, 147

GetBassType 128, 144, 147

GetBassValue 128, 144, 147

GetBlackout() 334

GetBlur 246

GetBorder 258

GetBpm 188, 223, 224, 226, 228, 232, 234, 240,
243, 246, 250, 254, 258, 263, 265, 274, 276, 281, 285,
287, 291, 296, 299, 300, 302, 309, 310, 312, 314

GetCapturing 281

GetCenter 234

GetChangeTime 234

GetChannelView 305, 307

GetCircle 234

GetCollision 232

MADRIX 2 Script Help and Manual362

© 2014 inoage GmbH

GetColor 85, 226, 232, 234, 238, 240, 243, 246,
250, 254, 258, 263, 264, 265, 270, 274, 285, 287, 291,
292, 296, 297, 299, 300, 302, 305, 307, 308, 309, 310,
312, 314, 316

GetColorCount 85, 232, 234, 238, 240, 243, 246,
250, 254, 258, 263, 270, 274, 287, 292, 300, 302, 305,
316

GetColorDepth 128, 144

GetColorFade 85, 238, 250, 263, 287, 300, 305

GetColorMix 258

GetColorMixLink 258

GetColorMode 243, 246, 250, 254, 258, 270, 274,
292, 316

GetColorPosition 85, 238, 250, 263, 287, 300, 305

GetComputerName 128, 144

GetContinuous 254, 276

GetCount 243, 258, 265, 270, 274

GetCrossed 238, 240, 287, 300, 310

GetCurrentImage 228

GetCurve 265

GetDate 128, 144

GetDegreeMapRotation 128, 144

GetDepth 274

GetDescription 325

GetDirection 228, 238, 240, 243, 246, 250, 254,
265, 274, 276, 281, 285, 287, 291, 296, 299, 300, 302,
305, 307, 309, 310, 312, 314

GetDmxIn 128, 144

GetDmxInChannel 128, 144

GetDoubleInwards 287, 300

GetDoubleOutwards 287, 300

GetDrawMode 287

GetDrawShape 246

GetDuration 234

GetEffectMode 265, 285

GetExplosionMode 246

GetExplosionShape 246

GetExplosionSize 246

GetFactor 265

GetFade 234, 240, 264, 287, 292, 296, 297, 299,
300, 302, 308, 310, 314, 316

GetFadeColor 334, 339

GetFadeOut 232, 246

GetFadeTime 334, 339

GetFadeType 334, 339

GetFadeValue 334, 339

GetFillMode 234

GetFillTime 234

GetFilter 223, 325

GetFilterColor 228, 281, 334

GetFlameSize 250

GetFontFaceName 254, 276

GetFontHeight 254, 276

GetFontItalic 254, 276

GetFontStrikeOut 254, 276

GetFontUnderline 254, 276

GetFontWeight 254, 276

GetFontWidth 254, 276

GetFrameCount 128, 144, 188, 213

GetFrameId 128, 144, 188, 213, 220

GetFrameSteps 128, 144, 188, 209

GetFreeze 334, 339

GetFrequency 254, 264

GetFrequencyMax 254

GetGraphMode 254

GetGravity 246

GetGrey 228, 281

GetHeight 250, 254

GetHeightMax 254

GetImageCount 228

GetInnerGlow 258

GetIntensity 250

GetInvert 287, 291, 296, 300

GetLayerBlind 325

GetLayerCount 325

GetLayerDegreeMapRotation 325

GetLayerFilter 325

GetLayerFrameCount 325

GetLayerFrameId 325

GetLayerFrameSteps 325

GetLayerLink 325

GetLayerMapModeMirror 325

GetLayerMapModeTile 325

GetLayerMapPixel 325

GetLayerMapTileEffectPixel 325

GetLayerMapTileEffectVector 325

GetLayerMapVector 325

GetLayerMixMode 325

GetLayerOpacity 325

GetLayerPixelTileOffset 325

GetLayerSolo 325

GetLayerSubMaster 325

GetLayerVectorMapRotation 325

GetLayerVectorTileOffset 325

GetLength 243, 265, 274, 291, 312

GetLink 128, 144

GetLoop 281

Index 363

© 2014 inoage GmbH

GetMapModeMirror 128, 144

GetMapModeTile 128, 144

GetMapPixel 111, 128, 144

GetMapTileEffectPixel 115

GetMapTileEffectVector 115

GetMapVector 111, 128, 144

GetMasterFader 334, 339

GetMatrixHeight 128, 144

GetMatrixWidth 128, 144

GetMaxBand 297

GetMaxSize 258

GetMidiInControl 128, 144

GetMidiInControlValue 128, 144

GetMidiInNote 128, 144

GetMidiInNoteValue 128, 144

GetMinBand 297

GetMirror 234, 287, 291, 296, 300

GetMixColor 234

GetMixMode 117, 128, 144

GetMode 250, 254, 258, 264, 276

GetModeFrequency 254

GetModeHeight 254

GetModePitch 254

GetModeWidth 254

GetMono 299, 302

GetMonochrome 287, 300

GetNoteValue 123, 128, 144, 147

GetObjects 232

GetOffTime 264

GetOnTime 264

GetOpacity 128, 144

GetOuterGlow 258

GetPause 325

GetPeak 254, 285

GetPitch 234, 243, 254

GetPitchMax 254

GetPixel 128, 144

GetPixelArea 97, 128, 144

GetPixelBorder 270, 292, 316

GetPixelCenterX 265

GetPixelCenterY 265

GetPixelImageHeight 228, 281

GetPixelImagePositionX 228, 281

GetPixelImagePositionY 228, 281

GetPixelImageWidth 228, 281

GetPixelLength 285

GetPixelMaxRandValue 240

GetPixelMinRandValue 240

GetPixelOffset 240

GetPixelPitch 292, 316

GetPixelStepWidth 240

GetPixelTextHeight 276

GetPixelTextOffsetX 276

GetPixelTextOffsetY 276

GetPixelTextPosX 276

GetPixelTextPosY 276

GetPixelTextWidth 276

GetPixelWidth 270, 292, 312, 314, 316

GetPixelXOffset 240

GetPoints 232

GetPushHF 287

GetRandom 240

GetReverseSentence 276

GetReverseWords 276

GetRgbToRgbw 228, 281

GetRocketCount 246

GetRotation 228, 254, 265, 274, 276, 281

GetScale 258

GetScriptEngineVersion 128, 144

GetSens 291, 292, 296, 297, 316

GetShape 232, 234, 243, 254, 258, 270, 274, 292,
302, 316

GetShapeCount 246

GetShapeSize 246

GetSharpness 258

GetShiftInwards 305, 307

GetShiftOutwards 305, 307

GetSize 232

GetSmooth 276

GetSoftwareVersion 128, 144

GetSoundLevel 119, 128, 144, 147

GetSparkleColor 246

GetSparkleColorCount 246

GetSparkleColorMode 246

GetSpeed 188, 224

GetSpeedMaster 325

GetStep 243, 310

GetStorageFilter 334

GetStorageFullState 334, 339

GetStoragePause 334, 339

GetStoragePlace 334, 339

GetStorageSpeedMaster 334, 339

GetStorageSubMaster 334, 339

GetStretch 228, 281

GetSubMaster 128, 144, 325

GetText 254, 276

MADRIX 2 Script Help and Manual364

© 2014 inoage GmbH

GetTextColor 276

GetTile 228, 281

GetTileEffect 115

GetTime 128, 144

GetTimeCode 128, 144

GetTimeSlot 305, 307

GetTonality 123, 128, 144, 147

GetToneScale 123, 128, 144, 147

GetUseBass 312, 314

GetUseLevel 291, 292, 296

GetUserName 128, 144

GetUserProfileDirectory 128, 144

GetVectorBorder 270, 292, 316

GetVectorCenterX 265

GetVectorCenterY 265

GetVectorImageHeight 228, 281

GetVectorImagePositionX 228, 281

GetVectorImagePositionY 228, 281

GetVectorImageWidth 228, 281

GetVectorLength 285

GetVectorMapRotation 128, 144

GetVectorMaxRandValue 240

GetVectorMinRandValue 240

GetVectorOffset 240

GetVectorPitch 292, 316

GetVectorPixel 128, 144

GetVectorStepWidth 240

GetVectorTextHeight 276

GetVectorTextOffsetX 276

GetVectorTextOffsetY 276

GetVectorTextPosX 276

GetVectorTextPosY 276

GetVectorTextWidth 276

GetVectorWidth 270, 292, 312, 314, 316

GetVectorXOffset 240

GetVideoEndTime 281

GetVideoLength 281

GetVideoLoaded 281

GetVideoPlaySpeed 281

GetVideoRunning 281

GetVideoStartTime 281

GetVideoTime 281

GetViewLog 287, 300, 302

GetWidth 234, 243, 254, 274

GetWidthMax 254

GetXOffset 310

global variable 47, 67

GOLD 155

Graphical user interface 190

GRAY 92, 155

GREEN 92, 155

Greyscale 128, 144

GUI elements 190

- H -
H 170

High speed in scripts 209

HSLIDEFADE 334

HWIPEFADE 334

HXSLIDEFADE 334

HXWIPEFADE 334

hypot 128, 144, 147

Hz 164, 170

- I -
Identifier 41

if 68, 128

ImportPatch 334

ImportStorage 334

ImportStoragePlace 334

index operator 53

information about a script 82

InitEffect 42, 185, 220, 322, 331

inoage 355

int 50, 52

int FILTER_EDGES 93

int FILTER_EDGES_POPUP 93

int FILTER_EMBOSS 93

int FILTER_EMBOSS_POPUP 93

int FILTER_GREEN_BLUE_WHITE 93

int FILTER_INVERT_H_MATRIX 93

int FILTER_INVERT_HV_MATRIX 93

int FILTER_INVERT_V_MATRIX 93

interval 123

InvertColor 128, 144

InvertColorPositions 85, 238, 250, 263, 287, 300,
305

InvertColors 85, 238, 250, 263, 287, 300, 305

InvertMatrix 128, 144

isalnum 56, 128, 144

isalpha 56, 128, 144

IsDmxInEnabled 128, 144

IsFrameFadeEnabled 128, 144

Index 365

© 2014 inoage GmbH

IsInterval 128, 144, 147

IsLayerFrameFadeEnabled 325

IsLayerMapped 325

IsLayerMapRotation 325

IsMapped 111, 128, 144

IsMapRotation 128, 144

IsMidiInEnabled 128, 144

IsNote 128, 144, 147

isnum 56, 128, 144

IsTonality 128, 144, 147

- K -
keywords 128

- L -
length 53

LIGHT_GRAY 155

ln 128, 144, 147

Loading 34

local variable 47, 67

log10 128, 144, 147

logical operation 62

loop 74

- M -
M2L 119, 123, 147

M2L Color Fade 308

M2L Color Rings 309

M2L Color Scroll 310

M2L Interval Drops 312

M2L Interval Tubes 314

M2L Single Tone Shapes 316

Macro 185, 220, 322, 331

Macro extension 220

Macros for Effects 31, 220

Macros For Effects: Specific Functions 223

MADRIX_GREEN 92, 155

MAGENTA 155

Main Output Macro 31, 331, 334

Main Output: Specific Functions 334

Map 148

Map Dialog 148

MAP_ANIM_OFF 325

MAP_ANIM_ON 325

MAP_MIRROR_H 155

MAP_MIRROR_HV 155

MAP_MIRROR_NONE 155

MAP_MIRROR_V 155

MAP_TILE_MIRROR_H 155

MAP_TILE_MIRROR_HV 155

MAP_TILE_MIRROR_V 155

MAP_TILE_NONE 155

MAP_TILE_REPEAT 155

MapEffect 116

MapEffectPixel 111, 128, 144

MapEffectVector 111, 128, 144

MapLayerEffectPixel 325

MapLayerEffectVector 325

MapLayerTileEffectPixel 325

MapLayerTileEffectVector 325

MapTileEffecPixel 115

MapTileEffect 116

MapTileEffectPixel 128, 144

MapTileEffectVector 115, 128, 144

MAROON 92, 155

MAS Script Effect 31, 185

MAS Script Effect: Specific Functions 188

Math functions 147

math operation 62

MatrixSizeChanged 42, 185, 220, 322, 331

max 128, 144, 147

MAX_FREQUENCY_VOLUME 155

Maximal render frequency 216

Memory management of fields 53

min 128, 144, 147

MirrorMode 115

MixMode 117

MIXMODE_AND 155

MIXMODE_COLORBURN 155

MIXMODE_COLORDODGE 155

MIXMODE_DARKEN 155

MIXMODE_DIFFERENCE 155

MIXMODE_EXCLUSION 155

MIXMODE_HARDLIGHT 155

MIXMODE_HARDMIX 155

MIXMODE_LIGHTEN 155

MIXMODE_LINEARBURN 155

MIXMODE_LINEARDODGE 155

MIXMODE_LINEARLIGHT 155

MIXMODE_MASK 155

MIXMODE_MULTIPLY 155

MIXMODE_NAND 155

MADRIX 2 Script Help and Manual366

© 2014 inoage GmbH

MIXMODE_NOR 155

MIXMODE_NORMAL 155

MIXMODE_OR 155

MIXMODE_OVERLAY 155

MIXMODE_PINLIGHT 155

MIXMODE_SCREEN 155

MIXMODE_SOFTLIGHT 155

MIXMODE_VIVIDLIGHT 155

MIXMODE_XOR 155

MixModes 117

MODE_BAR 287

MODE_BLURRY 258

MODE_CHAR 254, 276

MODE_CIRCLE 258

MODE_CLEAR 258

MODE_COLLAPSE 234

MODE_COSINE 254

MODE_CUBIC 254, 258

MODE_DIAMOND 258

MODE_DROPS 234

MODE_EXPLOSIONS 246

MODE_FIRE 250

MODE_FIREWORKS 246

MODE_FLAMES 250

MODE_FLAT 234

MODE_LINEAR 254, 258

MODE_MEDIUM 258

MODE_NONE 254

MODE_PULSE 264

MODE_QUADRATIC 254, 258

MODE_RADIAL 287

MODE_RADIAL_DOT 287

MODE_RADIAL_LINE 287

MODE_RADIAL_OUTLINE 287

MODE_RANDOM 234, 254, 258

MODE_RECTANGLE 258

MODE_SENTENCE 254, 276

MODE_SINE 254

MODE_SLIGHTLY_BLURRY 258

MODE_SLIGHTLY_CLEAR 258

MODE_SNAKE 234

MODE_SQRT 254, 258

MODE_SQUARE 254

MODE_STROBO 264

MODE_TETRIS 234

MODE_TRIANGLE 254

MODE_UNIFORM 254, 258

MODE_VERY_BLURRY 258

MODE_VERY_CLEAR 258

MODE_WORD 254, 276

multidimensional field 53

Music 2 Light 119, 123, 147

- N -
name 41, 82

NAVY 92, 155

No FX 93, 223

Non-primitive data types 50

NOPAUSE 325, 334

note 123

note table 170

notes 170

- O -
OLIVE 92, 155

operator 62

ORANGE 155

- P -
Parameter 42

PAUSE 325, 334

persistent 47, 128

PI 155

PINK 155

pixel 83

PixelFloodFill 128, 144

PostRenderEffect 42, 220, 322, 331

pow 128, 144, 147

PreRenderEffect 42, 185, 220, 322, 331

primitive data types 50

PURPLE 92, 155

- R -
rad2deg 128, 144, 147

random 128, 144, 147

ReadAsync 128, 144

RED 92, 155

relative coordinates 83

RemoveColor 85, 232, 234, 238, 240, 243, 246,
250, 254, 258, 263, 270, 274, 287, 292, 300, 305, 316

RemoveSparkleColor 246

Index 367

© 2014 inoage GmbH

Render frequency 209

RenderEffect 42, 185

replace 56, 128, 144

return 42, 128

Return value 42

rfindstring 56, 128, 144

ROTATION_CCW 265

ROTATION_CW 265

ROTATION_TEXT_180 334

ROTATION_TEXT_270 334

ROTATION_TEXT_90 334

ROTATION_TEXT_NONE 334

round 128, 144, 147

- S -
S2L 119, 147, 155

S2L EQ Drops 291

S2L EQ Shapes 292

S2L EQ Tubes 296

S2L Equalizer 287

S2L Frequency Flash 297

S2L Level Color 299

S2L Level Meter 300

S2L Level Ring 302

S2L Waveform 305

S2L Wavegraph 307

save data 47

Save macro 220

save script 185

Saving 34

scale 123

SCE Bitmap 228

SCE Bounce 232

SCE Color 226

SCE Color Change 234

SCE Color Fill 234

SCE Color Ramp 238

SCE Color Scroll 240

SCE Drops 243

SCE Explosions 246

SCE Fire 250

SCE Graph 254

SCE Metaballs 258

SCE Plasma 263

SCE Pulse / Stroboscope 264

SCE Radial 265

SCE Shapes 270

SCE Starfield 274

SCE Ticker 276

SCE Video 281

SCE Wave 285

Script 185

Script Editor 34

Script Editor Window 34

script effect 185

Script Examples 171

script information 82

Script variables 47

SeedRandom 258

SeekVideo 281

Service variables 47

SetAmplify 287, 291, 292, 296, 300, 302

SetAmplitude 265

SetAngle 238

SetAnimationSpeed 228

SetAudioFader 334, 339

SetAutostart 281

SetBandCount 287, 291, 296, 300

SetBandMode 287

SetBlackout 334

SetBlur 246

SetBorder 258

SetBpm 188, 223, 224, 226, 228, 232, 234, 240,
243, 246, 250, 254, 258, 263, 265, 274, 276, 281, 285,
287, 291, 296, 299, 300, 302, 309, 310, 312, 314

SetCenter 234

SetChangeTime 234

SetChannelView 305, 307

SetCircle 234

SetCollision 232

SetColor 85, 226, 232, 234, 238, 240, 243, 246,
250, 254, 258, 263, 264, 265, 270, 274, 285, 287, 291,
292, 296, 297, 299, 300, 302, 305, 307, 308, 309, 310,
312, 314, 316

SetColorFade 85, 238, 250, 263, 287, 300, 305

SetColorMix 258

SetColorMixLink 258

SetColorMode 243, 246, 250, 254, 258, 270, 274,
292, 316

SetColorPosition 85, 238, 250, 263, 287, 300, 305

SetContinuous 254, 276

SetCount 243, 258, 265, 270, 274

SetCrossed 238, 240, 287, 300, 310

SetCurrentImage 228

SetCurve 265

SetDegreeMapRotation 128, 144

MADRIX 2 Script Help and Manual368

© 2014 inoage GmbH

SetDepth 274

SetDescription 325

SetDirection 228, 238, 240, 243, 246, 250, 254,
265, 274, 276, 281, 285, 287, 291, 296, 299, 300, 302,
305, 307, 309, 310, 312, 314

SetDoubleInwards 287, 300

SetDoubleOutwards 287, 300

SetDrawMode 287

SetDrawShape 246

SetDuration 234

SetEffectMode 265, 285

SetExplosionMode 246

SetExplosionShape 246

SetExplosionSize 246

SetFactor 265

SetFade 234, 240, 264, 287, 292, 296, 297, 299,
300, 302, 308, 310, 314, 316

SetFadeColor 334, 339

SetFadeOut 232, 246

SetFadeTime 334, 339

SetFadeType 334, 339

SetFadeValue 334, 339

SetFillMode 234

SetFillTime 234

SetFilter 223, 325

SetFilterColor 228, 281, 334

SetFixedFrameRate 188, 216

SetFlameSize 250

SetFontFaceName 254, 276

SetFontHeight 254, 276

SetFontItalic 254, 276

SetFontStrikeOut 254, 276

SetFontUnderline 254, 276

SetFontWeight 254, 276

SetFontWidth 254, 276

SetFrameCount 188, 213

SetFrameId 128, 144, 188, 213, 220

SetFreeze 334, 339

SetFrequency 254, 264

SetFrequencyMax 254

SetGraphMode 254

SetGravity 246

SetGrey 228, 281

SetHeight 250, 254

SetHeightMax 254

SetInnerGlow 258

SetIntensity 250

SetInvalid 128, 144

SetInvert 287, 291, 296, 300

SetLayerBlind 325

SetLayerDegreeMapRotation 325

SetLayerFilter 325

SetLayerFrameId 325

SetLayerLink 325

SetLayerMapModeMirror 325

SetLayerMapModeTile 325

SetLayerMixMode 325

SetLayerOpacity 325

SetLayerPixelTileOffset 325

SetLayerSolo 325

SetLayerSubMaster 325

SetLayerVectorMapRotation 325

SetLayerVectorTileOffset 325

SetLength 243, 265, 274, 291, 312

SetLink 128, 144

SetLoop 281

SetMapMode 116

SetMapModeMirror 115, 128, 144

SetMapModeTile 115, 128, 144

SetMasterFader 334, 339

SetMatrix 97

SetMaxBand 297

SetMaxSize 258

SetMinBand 297

SetMirror 234, 287, 291, 296, 300

SetMirrorMode 115

SetMixColor 234

SetMixMode 117, 128, 144

SetMode 250, 254, 258, 264, 276

SetModeFrequency 254

SetModeHeight 254

SetModePitch 254

SetModeWidth 254

SetMono 299, 302

SetMonochrome 287, 300

SetObjects 232

SetOffTime 264

SetOnTime 264

SetOpacity 128, 144

SetOuterGlow 258

SetPause 325

SetPeak 254, 285

SetPitch 234, 243, 254

SetPitchMax 254

SetPixel 107, 128, 144

SetPixelBorder 270, 292, 316

Index 369

© 2014 inoage GmbH

SetPixelCenter 265

SetPixelGreyscale 107, 128, 144

SetPixelImagePosition 228, 281

SetPixelLength 285

SetPixelOffset 240

SetPixelPitch 292, 316

SetPixelRandValues 240

SetPixelStepWidth 240

SetPixelTextOffset 276

SetPixelTransposeEntry 128, 144

SetPixelWidth 270, 292, 312, 314, 316

SetPixelXOffset 240

SetPoints 232

SetPushHF 287

SetRandom 240

SetReadAsyncInterval 128, 144

SetReverseSentence 276

SetReverseWords 276

SetRgbToRgbw 228, 281

SetRocketCount 246

SetRotation 228, 254, 265, 274, 276, 281

SetScale 258

SetSens 291, 292, 296, 297, 316

SetShape 232, 234, 243, 254, 258, 270, 274, 292,
302, 316

SetShapeCount 246

SetShapeSize 246

SetSharpness 258

SetShiftInwards 305, 307

SetShiftOutwards 305, 307

SetSize 232

SetSmooth 276

SetSparkleColor 246

SetSparkleColorMode 246

SetSpeed 188, 224

SetSpeedMaster 325

SetStep 243, 310

SetStorageFilter 334

SetStoragePause 334, 339

SetStoragePlace 334, 339

SetStorageSpeedMaster 334, 339

SetStorageSubMaster 334, 339

SetStretch 228, 281

SetSubMaster 128, 144, 325

SetText 254, 276

SetTextColor 276

SetTile 228, 281

SetTileMode 115

SetTimeSlot 305, 307

SetUniformDistances 85, 238, 250, 263, 287, 300,
305

SetUseBass 312, 314

SetUseFloatFrames 188, 209

SetUseLevel 291, 292, 296

SetValid 128, 144

SetVectorBorder 270, 292, 316

SetVectorCenter 265

SetVectorImagePosition 228, 281

SetVectorLength 285

SetVectorMapRotation 128, 144

SetVectorOffset 240

SetVectorPitch 292, 316

SetVectorPixel 128, 144

SetVectorRandValues 240

SetVectorStepWidth 240

SetVectorTextOffset 276

SetVectorWidth 270, 292, 312, 314, 316

SetVectorXOffset 240

SetVideoAspectRatio 281

SetVideoEndTime 281

SetVideoPlaySpeed 281

SetVideoStartTime 281

SetVideoTime 281

SetViewLog 287, 300, 302

SetWidth 234, 243, 254, 274

SetWidthMax 254

SetXOffset 310

SHIFT_C_IN_OUT 155

SHIFT_C_OUT_IN 155

SHIFT_DL 155

SHIFT_DOWN 155

SHIFT_DR 155

SHIFT_H_IN_OUT 155

SHIFT_H_OUT_IN 155

SHIFT_LEFT 155

SHIFT_RIGHT 155

SHIFT_UL 155

SHIFT_UP 155

SHIFT_UR 155

SHIFT_V_IN_OUT 155

SHIFT_V_OUT_IN 155

ShiftMatrix 96

ShiftPixelMatrix 96, 128, 144

ShiftVectorMatrix 96, 128, 144

SILVER 92, 155

sin 128, 144, 147

MADRIX 2 Script Help and Manual370

© 2014 inoage GmbH

sinDeg 128, 144, 147

sinH 128, 144, 147

sinHDeg 128, 144, 147

SKY 155

Slider 190

Sound 2 Light 119, 147, 155

Sound Data 155

SOUND_DATA_LEFT 119, 155

SOUND_DATA_LEFT[] 155

SOUND_DATA_RIGHT 119, 155

SOUND_DATA_RIGHT[] 155

Spectrum 164

speed 224

speedmaster 209

sqrt 128, 144, 147

startswith 56, 128, 144

StartVideo 281

StartVideoBackward 281

statement 67

StopVideo 281

Storage Place Macro 31, 322, 325

STORAGE_A 334

STORAGE_B 334

Store macro 220

store script 185

strcmp 56, 128, 144

String 50, 52, 62, 150

string operations 56

strip 56, 128, 144

structure 52, 162

structures 50, 162

substring 56, 128, 144

switch 56, 71, 128

Syntax Highlighting 39

- T -
tan 128, 144, 147

tanDeg 128, 144, 147

tanH 128, 144, 147

tanHDeg 128, 144, 147

TEAL 92, 155

Text field 190

TileEffect 115, 116

TileMode 115

time 50, 52, 162

tokenize 56, 128, 144

tolower 56, 128, 144

tonality 123

tone scale 123

toupper 56, 128, 144

TRACE 128, 144

TRUE 50, 128

trunc 128, 144, 147

TURQUOISE 155

- U -
UNFREEZE 334

- V -
Variable 41

Variable declaration 47

Variables 46, 47

vector 83

VectorFloodFill 128, 144

version 82

void Filter(int filter) 93

VSLIDEFADE 334

VWIPEFADE 334

VXSLIDEFADE 334

VXWIPEFADE 334

- W -
while 74, 128

WHITE 92, 155

WHITE_ALPHA 155

WHITE_SPACES 56, 155

WHITEFADE 334

WITH_AUTOFADE 334

WITHOUT_AUTOFADE 334

WriteText 128, 144

- Y -
YELLOW 92, 155

	What is New
	MADRIX Script (Introduction)
	Getting Started
	Working With The Script Editor
	Basics
	Writing A Script
	Syntax Highlighting
	Identifiers
	Functions
	Data Types & Variables
	Using Variables
	Using Data Types
	Conversion Between Data Types
	Fields
	Strings & String Operations

	Expressions
	Statements
	'If' & 'Else If' Statements
	'Switch' Statements
	'For' & 'While' Loops

	Reading From External Files
	Using Comments
	Including Extra Information

	Advanced Techniques
	Draw And Render Functions
	Pixels Vs. Vectors
	Using Colors
	Predefined Colors
	Using Filters
	'ShiftMatrix'
	'DrawPixelArea'
	'PixelTranspose'
	'SetPixel'

	Manipulating Effects
	Map An Effect
	Tile An Effect
	Mix Modes

	Sound2Light & Music2Light
	Sound2Light (S2L)
	Music2Light (M2L)

	MADRIX Script (Programming Language Overview)
	Keyword Search
	List Of Functions (Alphabetical Order)
	List Of Functions (Grouped)
	List Of Global Variables And Constants
	List Of Operations
	List Of Structures
	Table Of Frequencies
	Table Of Notes
	Examples

	MAS Script Effect
	Overview
	Functions
	Using GUI Elements (User Interaction)
	Controlling The Tempo
	Increasing The Speed Of Effects
	Controlling A Script Via Frame ID
	Using A Fixed Render Frequency

	Macros For Effects
	Overview
	Functions
	SCE Static Color Effects
	SCE Color
	SCE Bitmap
	SCE Bounce
	SCE Color Change
	SCE Color Fill
	SCE Color Ramp
	SCE Color Scroll
	SCE Drops
	SCE Explosions
	SCE Fire
	SCE Graph
	SCE Metaballs
	SCE Plasma
	SCE Pulse / Stroboscope
	SCE Radial
	SCE Shapes
	SCE Starfield
	SCE Ticker
	SCE Video
	SCE Wave

	S2L Sound2Light Effects
	S2L Equalizer
	S2L EQ Drops
	S2L EQ Shapes
	S2L EQ Tubes
	S2L Frequency Flash
	S2L Level Color
	S2L Level Meter
	S2L Level Ring
	S2L Waveform
	S2L Wavegraph

	M2L Music2Light Effects
	M2L Color Fade
	M2L Color Rings
	M2L Color Scroll
	M2L Interval Drops
	M2L Interval Tubes
	M2L Single Tone Shapes

	Storage Place Macro
	Overview
	Functions

	Main Output Macro
	Overview
	Functions
	Examples

	Imprint & Copyright

